Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Benefits of lubricant oil analysis for maintenance decision support: A case study
Karanović, V.V.; Jocanović, M.T.; Wakiru, J.M. et al.
2018In Rackov M.; Mitrovic R. (Eds.) IOP Conference Series: Materials Science and Engineering: The 10th International Symposium Machine and Industrial Design in Mechanical Engineering (KOD 2018)
Peer reviewed
 

Documents


Texte intégral
Karanovi87_2018_IOP_Conf._Ser.%3A_Mater._Sci._Eng._393_012013.pdf
Postprint Auteur (721.99 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Condition monitoring; Cost benefit analysis; Decision support systems; Hydraulic equipment; Hydraulic machinery; Lubricating oils; Maintenance; Product design; Solid lubricants; Additional costs; Current problems; Equipment condition monitoring; Maintenance decisions; Maintenance managers; Maintenance staff; Oil condition monitoring; Solid particulates; Chemical analysis
Résumé :
[en] Often, maintenance managers face challenges in making maintenance decisions due to the lack of sufficient and accurate information. It's not uncommon for the current problem to be resolved, but the cause of the problem remains, which is why some types of failures often recur, reducing the equipment availability and generating additional costs. To overcome these challenges, modern maintenance principles are based on the application of the equipment condition monitoring techniques. One of these techniques is used oil analysis also known as lubricant condition monitoring, which yields an insight into the physical and chemical state of the lubricating oil, as well as the condition of the machine elements that come in contact with oil during routine operation. To illustrate the benefits of employing this technique, a case study of asphalt paving machine is presented. In the case study, four basic lubricant parameters (viscosity, water content, solid particulate content and acid number) for the hydraulic system were analysed. The results of the analysis show a sudden increase in the solid particles content, due to which certain maintenance interventions had to be taken to avoid failure of the system and unnecessary maintenance costs. Also, by oil condition monitoring, after two years, maintenance staff received information which is the base for making a decision on the appropriate replacement interval of hydraulic oil. © 2018 Institute of Physics Publishing. All rights reserved.
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
Karanović, V.V.;  University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovica 6, Novi Sad, 21000, Serbia
Jocanović, M.T.;  KU Leuven, Centre of Industrial Management, Celestijnenlaan 300A, Heverlee, 3001, Belgium
Wakiru, J.M.
OROSNJAK, Marko  ;  University of Novi Sad > Faculty of Technical Sciences, Department of Industrial Engineering and Management > Quality, Effectiveness and Logistics
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Benefits of lubricant oil analysis for maintenance decision support: A case study
Date de publication/diffusion :
2018
Nom de la manifestation :
The 10th International Symposium Machine and Industrial Design in Mechanical Engineering (KOD 2018) 6–8 June 2018, Novi Sad, Serbia
Organisateur de la manifestation :
Faculty of Technical Sciences, Department of Mechanical Engineering
Lieu de la manifestation :
Novi Sad, Serbie
Date de la manifestation :
6–8 June 2018
Numéro de la conférence :
10
Manifestation à portée :
International
Titre de l'ouvrage principal :
IOP Conference Series: Materials Science and Engineering: The 10th International Symposium Machine and Industrial Design in Mechanical Engineering (KOD 2018)
Editeur scientifique :
Rackov M.
Mitrovic R.
Maison d'édition :
Institute of Physics Publishing, Novi Sad, Serbie
Collection et n° de collection :
IOP Conference Series: Materials Science and Engineering
ISSN Collection :
1757-899X
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 20 janvier 2025

Statistiques


Nombre de vues
26 (dont 0 Unilu)
Nombre de téléchargements
112 (dont 0 Unilu)

citations Scopus®
 
16
citations Scopus®
sans auto-citations
11
OpenCitations
 
12
citations OpenAlex
 
24

Bibliographie


Publications similaires



Contacter ORBilu