Atomic scale; Bloch oscillations; Fourier components; Hall conductivity; Optical response; Real-space; Space periodicity; Static electric fields; Static fields; Tera Hertz; Physics and Astronomy (all); Physics - Mesoscopic Systems and Quantum Hall Effect
Résumé :
[en] Artificial crystals such as moiré superlattices can have a real-space periodicity much larger than the underlying atomic scale. This facilitates the presence of Bloch oscillations in the presence of a static electric field. We demonstrate that the optical response of such a system, when dressed with a static field, becomes resonant at the frequencies of Bloch oscillations, which are in the terahertz regime when the lattice constant is of the order of 10 nm. In particular, we show within a semiclassical band-projected theory that resonances in the dressed Hall conductivity are proportional to the lattice Fourier components of the Berry curvature. We illustrate our results with a low-energy model on an effective honeycomb lattice.
Disciplines :
Physique
Auteur, co-auteur :
DE BEULE, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Thomas SCHMIDT
Mele, E J ; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Berry Curvature Spectroscopy from Bloch Oscillations.
Fonds National de la Recherche Luxembourg U.S. Department of Energy
Subventionnement (détails) :
We thank V. T. Phong for discussions. This research was funded in whole, or in part, by the Luxembourg National Research Fund (FNR) (Project No. 16515716). C. D. B. and E. J. M. are supported by the Department of Energy under Grant No. DE-FG02-84ER45118.
T. Morimoto and N. Nagaosa, Topological nature of nonlinear optical effects in solids, Sci. Adv. 2, e1501524 (2016). SACDAF 2375-2548 10.1126/sciadv.1501524
L. Wu, S. Patankar, T. Morimoto, N. L. Nair, E. Thewalt, A. Little, J. G. Analytis, J. E. Moore, and J. Orenstein, Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals, Nat. Phys. 13, 350 (2017). NPAHAX 1745-2473 10.1038/nphys3969
J. Ahn, G.-Y. Guo, N. Nagaosa, and A. Vishwanath, Riemannian geometry of resonant optical responses, Nat. Phys. 18, 290 (2022). NPAHAX 1745-2473 10.1038/s41567-021-01465-z
I. Sodemann and L. Fu, Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials, Phys. Rev. Lett. 115, 216806 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.115.216806
C.-P. Zhang, X.-J. Gao, Y.-M. Xie, H. C. Po, and K. T. Law, Higher-order nonlinear anomalous Hall effects induced by Berry curvature multipoles, Phys. Rev. B 107, 115142 (2023). PRBMDO 2469-9950 10.1103/PhysRevB.107.115142
E. Y. Andrei and A. H. MacDonald, Graphene bilayers with a twist, Nat. Mater. 19, 1265 (2020). NMAACR 1476-1122 10.1038/s41563-020-00840-0
E. Y. Andrei, D. K. Efetov, P. Jarillo-Herrero, A. H. MacDonald, K. F. Mak, T. Senthil, E. Tutuc, A. Yazdani, and A. F. Young, The marvels of moiré materials, Nat. Rev. Mater. 6, 201 (2021). NRMADL 2058-8437 10.1038/s41578-021-00284-1
K. F. Mak and J. Shan, Semiconductor moiré materials, Nat. Nanotechnol. 17, 686 (2022). NNAABX 1748-3387 10.1038/s41565-022-01165-6
R. Tsu, Superlattice to Nanoelectronics (Elsevier Science, Amsterdam, 2005).
C. Forsythe, X. Zhou, K. Watanabe, T. Taniguchi, A. Pasupathy, P. Moon, M. Koshino, P. Kim, and C. R. Dean, Band structure engineering of 2D materials using patterned dielectric superlattices, Nat. Nanotechnol. 13, 566 (2018). NNAABX 1748-3387 10.1038/s41565-018-0138-7
J. Mao, S. P. Milovanović, M. Ancrossed d signelković, X. Lai, Y. Cao, K. Watanabe, T. Taniguchi, L. Covaci, F. M. Peeters, A. K. Geim, Y. Jiang, and E. Y. Andrei, Evidence of flat bands and correlated states in buckled graphene superlattices, Nature (London) 584, 215 (2020). NATUAS 0028-0836 10.1038/s41586-020-2567-3
A. Fahimniya, Z. Dong, E. I. Kiselev, and L. Levitov, Synchronizing Bloch-oscillating free carriers in moiré flat bands, Phys. Rev. Lett. 126, 256803 (2021). PRLTAO 0031-9007 10.1103/PhysRevLett.126.256803
V. T. Phong and E. J. Mele, Quantum geometric oscillations in two-dimensional flat-band solids, Phys. Rev. Lett. 130, 266601 (2023). PRLTAO 0031-9007 10.1103/PhysRevLett.130.266601
C. D. Beule, V. T. Phong, and E. J. Mele, Roses in the nonperturbative current response of artificial crystals, Proc. Natl. Acad. Sci. U.S.A. 120, 2306384120 (2023). PNASA6 0027-8424 10.1073/pnas.2306384120
P. A. Pantaleón, T. Low, and F. Guinea, Tunable large Berry dipole in strained twisted bilayer graphene, Phys. Rev. B 103, 205403 (2021). PRBMDO 2469-9950 10.1103/PhysRevB.103.205403
Z. He and H. Weng, Giant nonlinear Hall effect in twisted bilayer (Equation presented), npj Quantum Mater. 6, 101 (2021). QMUADP 2397-4648 10.1038/s41535-021-00403-9
S. Sinha, P. C. Adak, A. Chakraborty, K. Das, K. Debnath, L. D. V. Sangani, K. Watanabe, T. Taniguchi, U. V. Waghmare, A. Agarwal, and M. M. Deshmukh, Berry curvature dipole senses topological transition in a moiré superlattice, Nat. Phys. 18, 765 (2022). NPAHAX 1745-2473 10.1038/s41567-022-01606-y
A. Chakraborty, K. Das, S. Sinha, P. C. Adak, M. M. Deshmukh, and A. Agarwal, Nonlinear anomalous Hall effects probe topological phase-transitions in twisted double bilayer graphene, 2D Mater. 9, 045020 (2022). DMATB7 2053-1583 10.1088/2053-1583/ac8b93
C.-P. Zhang, J. Xiao, B. T. Zhou, J.-X. Hu, Y.-M. Xie, B. Yan, and K. T. Law, Giant nonlinear Hall effect in strained twisted bilayer graphene, Phys. Rev. B 106, L041111 (2022). PRBMDO 2469-9950 10.1103/PhysRevB.106.L041111
P. A. Pantaleón, V. o. T. Phong, G. G. Naumis, and F. Guinea, Interaction-enhanced topological Hall effects in strained twisted bilayer graphene, Phys. Rev. B 106, L161101 (2022). PRBMDO 2469-9950 10.1103/PhysRevB.106.L161101
J. Duan, Y. Jian, Y. Gao, H. Peng, J. Zhong, Q. Feng, J. Mao, and Y. Yao, Giant second-order nonlinear Hall effect in twisted bilayer graphene, Phys. Rev. Lett. 129, 186801 (2022). PRLTAO 0031-9007 10.1103/PhysRevLett.129.186801
J. Zhong, J. Duan, S. Zhang, H. Peng, Q. Feng, Y. Hu, Q. Wang, J. Mao, J. Liu, and Y. Yao, Effective manipulation and realization of a colossal nonlinear Hall effect in an electric-field tunable moiré system, arXiv:2301.12117.
F. Bloch, Über die quantenmechanik der elektronen in kristallgittern, Z. Phys. 52, 555 (1929). ZEPYAA 0044-3328 10.1007/BF01339455
K. Leo, P. H. Bolivar, F. Brüggemann, R. Schwedler, and K. Köhler, Observation of Bloch oscillations in a semiconductor superlattice, Solid State Commun. 84, 943 (1992). SSCOA4 0038-1098 10.1016/0038-1098(92)90798-E
T. T. Luu and H. J. Wörner, Measurement of the Berry curvature of solids using high-harmonic spectroscopy, Nat. Commun. 9, 916 (2018). NCAOBW 2041-1723 10.1038/s41467-018-03397-4
M. Schüler, U. D. Giovannini, H. Hübener, A. Rubio, M. A. Sentef, and P. Werner, Local Berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials, Sci. Adv. 6, eaay2730 (2020). SACDAF 2375-2548 10.1126/sciadv.aay2730
M.-C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum, Phys. Rev. Lett. 75, 1348 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.75.1348
G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B 59, 14915 (1999). PRBMDO 0163-1829 10.1103/PhysRevB.59.14915
To construct a wave packet (Equation presented), the Bloch states (Equation presented) should be smooth on the BZ torus, i.e., (Equation presented) with (Equation presented) a reciprocal lattice vector. This is periodic gauge [30] and yields (Equation presented), in contrast to (Equation presented) for which the Bloch Hamiltonian is periodic (Bloch form). The Berry curvature is generally different in both gauges.
D. Vanderbilt, Berry Phases in Electronic Structure Theory (Cambridge University Press, Cambridge, 2018).
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, Philadelphia, 1976).
S. A. Mikhailov, Nonperturbative quasiclassical theory of the nonlinear electrodynamic response of graphene, Phys. Rev. B 95, 085432 (2017). PRBMDO 2469-9950 10.1103/PhysRevB.95.085432
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.131.196603 for a detailed calculation of the occupation function and the dressed optical conductivity.
Note that one also has to transform (Equation presented) such that (Equation presented) is nonzero even in the presence of mirror symmetry.
Y.-H. Zhang, D. Mao, and T. Senthil, Twisted bilayer graphene aligned with hexagonal boron nitride: Anomalous Hall effect and a lattice model, Phys. Rev. Res. 1, 033126 (2019). PPRHAI 2643-1564 10.1103/PhysRevResearch.1.033126
C. Lewandowski and L. Levitov, Intrinsically undamped plasmon modes in narrow electron bands, Proc. Natl. Acad. Sci. U.S.A. 116, 20869 (2019). PNASA6 0027-8424 10.1073/pnas.1909069116
M. Koshino, Band structure and topological properties of twisted double bilayer graphene, Phys. Rev. B 99, 235406 (2019). PRBMDO 2469-9950 10.1103/PhysRevB.99.235406
N. R. Chebrolu, B. L. Chittari, and J. Jung, Flat bands in twisted double bilayer graphene, Phys. Rev. B 99, 235417 (2019). PRBMDO 2469-9950 10.1103/PhysRevB.99.235417
S. P. Milovanović, M. Anecrossed d signelković, L. Covaci, and F. M. Peeters, Band flattening in buckled monolayer graphene, Phys. Rev. B 102, 245427 (2020). PRBMDO 2469-9950 10.1103/PhysRevB.102.245427
V. T. Phong and E. J. Mele, Boundary modes from periodic magnetic and pseudomagnetic fields in graphene, Phys. Rev. Lett. 128, 176406 (2022). PRLTAO 0031-9007 10.1103/PhysRevLett.128.176406
Q. Gao, J. Dong, P. Ledwith, D. Parker, and E. Khalaf, Untwisting moiré physics: Almost ideal bands and fractional Chern insulators in periodically strained monolayer graphene, Phys. Rev. Lett. 131, 096401 (2023). 10.1103/PhysRevLett.131.096401
S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, Observation of the quasiparticle Hall effect in superconducting (Equation presented), Phys. Rev. Lett. 73, 1537 (1994). PRLTAO 0031-9007 10.1103/PhysRevLett.73.1537
R. Shimano, Y. Ikebe, K. S. Takahashi, M. Kawasaki, N. Nagaosa, and Y. Tokura, Terahertz Faraday rotation induced by an anomalous Hall effect in the itinerant ferromagnet (Equation presented), Europhys. Lett. 95, 17002 (2011). EULEEJ 0295-5075 10.1209/0295-5075/95/17002