Article (Périodiques scientifiques)
Energy-Efficient on-Board Radio Resource Management for Satellite Communications via Neuromorphic Computing
ORTIZ GOMEZ, Flor de Guadalupe; Skatchkovsky, Nicolas; LAGUNAS TARGARONA, Eva et al.
2024In IEEE Transactions on Machine Learning in Communications and Networking, 2 (xx), p. 169-189
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Energy-Efficient_on-Board_Radio_Resource_Management_for_Satellite_Communications_via_Neuromorphic_Computing.pdf
Postprint Auteur (2.72 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Resource management; Neuromorphic engineering; Space vehicles; Program processors; Satellites; Satellite broadcasting; Machine learning; Energy-efficient; neuromorphic computing; radio resource management; satellite communication; spiking neural networks
Résumé :
[en] The latest Satellite Communication (SatCom) missions are characterized by a fully reconfigurable on-board software-defined payload, capable of adapting radio resources to the temporal and spatial variations of the system traffic. As pure optimization-based solutions have shown to be computationally tedious and to lack flexibility, Machine Learning (ML)-based methods have emerged as promising alternatives. We investigate the application of energy-efficient brain-inspired ML models for on-board radio resource management. Apart from software simulation, we report extensive experimental results leveraging the recently released Intel Loihi 2 chip. To benchmark the performance of the proposed model, we implement conventional Convolutional Neural Networks (CNN) on a Xilinx Versal VCK5000, and provide a detailed comparison of accuracy, precision, recall, and energy efficiency for different traffic demands. Most notably, for relevant workloads, Spiking Neural Networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100× as compared to the CNN-based reference platform. Our findings point to the significant potential of neuromorphic computing and SNNs in supporting on-board SatCom operations, paving the way for enhanced efficiency and sustainability in future SatCom systems
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Other
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
ORTIZ GOMEZ, Flor de Guadalupe  ;  University of Luxembourg ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg City, Luxembourg
Skatchkovsky, Nicolas;  Francis Crick Institute, London, U.K.
LAGUNAS TARGARONA, Eva  ;  University of Luxembourg ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg City, Luxembourg
Martins, Wallace A. ;  Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg City, Luxembourg
EAPPEN, Geoffrey  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SigCom > Team Symeon CHATZINOTAS ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg City, Luxembourg
DAOUD, Saed Shaheer Awad  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg City, Luxembourg
Simeone, Osvaldo ;  Department of Engineering, King’s College London, London, U.K.
Rajendran, Bipin ;  Department of Engineering, King’s College London, London, U.K.
CHATZINOTAS, Symeon  ;  University of Luxembourg ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg City, Luxembourg
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Energy-Efficient on-Board Radio Resource Management for Satellite Communications via Neuromorphic Computing
Titre traduit :
[en] NA
Titre original :
[en] Energy-Efficient on-Board Radio Resource Management for Satellite Communications via Neuromorphic Computing
Date de publication/diffusion :
10 janvier 2024
Titre du périodique :
IEEE Transactions on Machine Learning in Communications and Networking
eISSN :
2831-316X
Maison d'édition :
Institute of Electrical and Electronics Engineers (IEEE)
Titre particulier du numéro :
NA
Volume/Tome :
2
Fascicule/Saison :
xx
Pagination :
169-189
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
European Space Agency (ESA)-The Application of Neuromorphic Processors to Satcom Applications
Luxembourg National Research Fund (FNR) through the project SmartSpace
European Union’s Horizon Europe Project CENTRIC
Open Fellowship of the EPSRC
Project REASON, a U.K. Government funded project through the Future Open Networks Research Challenge
Disponible sur ORBilu :
depuis le 08 janvier 2025

Statistiques


Nombre de vues
131 (dont 6 Unilu)
Nombre de téléchargements
101 (dont 4 Unilu)

OpenCitations
 
0
citations OpenAlex
 
13

Bibliographie


Publications similaires



Contacter ORBilu