Adaptive forgetting factor; direction-of-arrival; matrix completion; recursive least squares; target tracking; Direction of arrival estimation; Direction of arrival tracking; Directionof-arrival (DOA); Forgetting factors; Lower complexity; Matrix completion; Power; Recursive least squares; Targets tracking; Computer Science (all); Materials Science (all); Engineering (all)
Résumé :
[en] In this paper, we propose an algorithm for fast direction-of-arrival (DoA) tracking in reconfigurable intelligent surface aided systems. We reduce the number of radio-frequency chains in the access point to reduce overall power consumption which leads to signal data loss resulting in inaccurate DoA estimation. The incomplete signal data is recovered by truncated nuclear norm regularization alternating direction method of multipliers algorithm leading to a reduction of power consumption. The adopted iterative matrix completion algorithm is robust and fast, hence suitable for DoA tracking applications. In order to reduce the high computational cost of the subspace DoA estimation algorithms, a novel adaptive forgetting factor (AF) recursive least squares algorithm is proposed for fast DoA estimation and tracking. We adopted low-complexity adaptive moment estimation method for AF. We evaluated and compared the proposed algorithm with the state-of-the art algorithms under single-path propagation and multi-path propagation conditions. Based on the analysis and simulation results, after applying matrix completion, the proposed DoA tracking algorithm outperforms the state-of-the-art algorithms.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
ZORKUN, Aral ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Universidad Politécnica de Madrid, Centro de Procesamiento de Información y Telecomunicaciones, Escuela Técnica Superior de Ingenieros de Telecomunicación, Madrid, Spain ; Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg, Luxembourg
Salas-Natera, Miguel A. ; Universidad Politécnica de Madrid, Centro de Procesamiento de Información y Telecomunicaciones, Escuela Técnica Superior de Ingenieros de Telecomunicación, Madrid, Spain
Rodriguez-Osorio, Ramon Martinez; Universidad Politécnica de Madrid, Centro de Procesamiento de Información y Telecomunicaciones, Escuela Técnica Superior de Ingenieros de Telecomunicación, Madrid, Spain
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg, Luxembourg
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Energy Efficient Low-Complexity RIS-Aided 3-D DoA Estimation and Target Tracking Algorithm via Matrix Completion
Date de publication/diffusion :
05 décembre 2024
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
N. Ruan, H. Wang, F. Wen, and J. Shi, "DOA Estimation in B5G/6G: Trends and Challenges," Sensors, vol. 22, no. 14, p. 5125, Jul. 2022, doi: 10.3390/s22145125.
M. Dajer et al., "Reconfigurable intelligent surface: Design the channel-A new opportunity for future wireless networks," Digital Communications and Networks, Nov. 2021, doi: 10.1016/j.dcan.2021.11.002.
P. Zhang, J. Zhang, H. Xiao, H. Du, D. Niyato, and B. Ai, "RIS-Aided 6G Communication System With Accurate Traceable User Mobility," IEEE Trans. Veh. Technol., vol. 72, no. 2, pp. 2718-2722, Feb. 2023, doi: 10.1109/TVT.2022.3214818.
V. Garg, P. Giménez-Febrer, A. Pagès-Zamora, and I. Santamaria, "DOA estimation via shift-invariant matrix completion," Signal Processing, vol. 183, p. 107993, Jun. 2021, doi: 10.1016/j.sigpro.2021.107993.
Z.-Q. He and X. Yuan, "Cascaded Channel Estimation for Large Intelligent Metasurface Assisted Massive MIMO," IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 210-214, Feb. 2020, doi: 10.1109/LWC.2019.2948632.
T. Wang, B. Ai, R. He, and Z. Zhong, "Two-Dimension Direction-of-Arrival Estimation for Massive MIMO Systems," IEEE Access, vol. 3, pp. 2122-2128, 2015, doi: 10.1109/ACCESS.2015.2496944.
H. Halbauer, S. Saur, J. Koppenborg, and C. Hoek, "3D beamforming: Performance improvement for cellular networks," Bell Labs Tech. J., vol. 18, no. 2, pp. 37-56, Sep. 2013, doi: 10.1002/bltj.21604.
A. Fascista, A. Coluccia, H. Wymeersch, and G. Seco-Granados, "RIS-Aided Joint Localization and Synchronization with a Single-Antenna Mmwave Receiver," in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada: IEEE, Jun. 2021, pp. 4455-4459. doi: 10.1109/ICASSP39728.2021.9413515.
L. Yashvanth and C. R. Murthy, "Cascaded Channel Estimation for Distributed IRS Aided mmWave Massive MIMO Systems," in GLOBECOM 2022-2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil: IEEE, Dec. 2022, pp. 717-723. doi: 10.1109/GLOBECOM48099.2022.10001263.
Y. Lin, S. Jin, M. Matthaiou, and X. You, "Channel Estimation and User Localization for IRS-Assisted MIMO-OFDM Systems," IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2320-2335, Apr. 2022, doi: 10.1109/TWC.2021.3111176.
H. Krim and M. Viberg, "Two decades of array signal processing research: the parametric approach," IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67-94, Jul. 1996, doi: 10.1109/79.526899.
W. Zhang, Z. Wang, and W. P. Tay, "Approximate Maximum-Likelihood RIS-Aided Positioning," IEEE Trans. Wireless Commun., pp. 1-1, 2023, doi: 10.1109/TWC.2023.3266457.
S. Buzzi, C.-L. I, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone, "A Survey of Energy-Efficient Techniques for 5G Networks and Challenges Ahead," IEEE J. Select. Areas Commun., vol. 34, no. 4, pp. 697-709, Apr. 2016, doi: 10.1109/JSAC.2016.2550338.
J. G. Andrews et al., "What Will 5G Be?," IEEE J. Select. Areas Commun., vol. 32, no. 6, pp. 1065-1082, Jun. 2014, doi: 10.1109/JSAC.2014.2328098.
H. Chen, Y. Bai, Q. Wang, H. Chen, L. Tang, and P. Han, "DOA Estimation Assisted by Reconfigurable Intelligent Surfaces," IEEE Sensors J., vol. 23, no. 12, pp. 13433-13442, Jun. 2023, doi: 10.1109/JSEN.2023.3273862.
B. Jalal, O. Elnahas, and Z. Quan, "Efficient DOA Estimation Under Partially Impaired Antenna Array Elements," IEEE Trans. Veh. Technol., vol. 71, no. 7, pp. 7991-7996, Jul. 2022, doi: 10.1109/TVT.2022.3169404.
A. E. Zorkun, M. A. Salas-Natera, and R. M. Rodríguez-Osorio, "An Improved Hybrid Beamforming Algorithm for Fast Target Tracking in Satellite and V2X Communication," Remote Sensing, vol. 16, no. 1, Art. no. 1, Jan. 2024, doi: 10.3390/rs16010013.
Debing Zhang, Yao Hu, Jieping Ye, Xuelong Li, and Xiaofei He, "Matrix completion by Truncated Nuclear Norm Regularization," in 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI: IEEE, Jun. 2012, pp. 2192-2199. doi: 10.1109/CVPR.2012.6247927.
B. Recht, M. Fazel, and P. A. Parrilo, "Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization," SIAM Review, vol. 52, no. 3, pp. 471-501, 2010.
L. T. Nguyen, J. Kim, and B. Shim, "Low-Rank Matrix Completion: A Contemporary Survey," IEEE Access, vol. 7, pp. 94215-94237, 2019, doi: 10.1109/ACCESS.2019.2928130.
Y. Hu, D. Zhang, J. Ye, X. Li, and X. He, "Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 9, pp. 2117-2130, Sep. 2013, doi: 10.1109/TPAMI.2012.271.
S. Ciochina, C. Paleologu, J. Benesty, and A. A. Enescu, "On the influence of the forgetting factor of the RLS adaptive filter in system identification," in 2009 International Symposium on Signals, Circuits and Systems, Iasi, Romania: IEEE, Jul. 2009, pp. 1-4. doi: 10.1109/ISSCS.2009.5206117.
S. Lee, J. Lim, and K.-M. Sung, "A low-complexity AFF-RLS algorithm using a normalization technique," IEICE Electron. Express, vol. 6, no. 24, pp. 1774-1780, 2009, doi: 10.1587/elex.6.1774.
Z. Fei, Z. Wu, Y. Xiao, J. Ma, and W. He, "A new short-arc fitting method with high precision using Adam optimization algorithm," Optik, vol. 212, p. 164788, Jun. 2020, doi: 10.1016/j.ijleo.2020.164788.
S. Song, J.-S. Lim, S. Baek, and K.-M. Sung, "Gauss Newton variable forgetting factor recursive least squares for time varying parameter tracking," Electronics Letters, vol. 36, no. 11, pp. 1-2, 2000.
D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," Jan. 29, 2017, arXiv: arXiv:1412.6980. Accessed: Apr. 23, 2024. [Online]. Available: http://arxiv.org/abs/1412.6980
S. S. Haykin, Adaptive filter theory, 4th ed. Upper Saddle River, N.J: Prentice Hall, 2002.
A. H. Sayed, Adaptive filters. Hoboken, N.J: Wiley-Interscience : IEEE Press, 2008.
Shu-Hung Leung and C. F. So, "Gradient-based variable forgetting factor RLS algorithm in time-varying environments," IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3141-3150, Aug. 2005, doi: 10.1109/TSP.2005.851110.
Y. Cai and R. C. De Lamare, "Low-complexity variable forgetting factor mechanism for RLS algorithms in interference mitigation applications," in 2012 International Symposium on Wireless Communication Systems (ISWCS), Paris, France: IEEE, Aug. 2012, pp. 471-475. doi: 10.1109/ISWCS.2012.6328412.
H.-C. Huang and J. Lee, "A New Variable Step-Size NLMS Algorithm and Its Performance Analysis," IEEE Transactions on Signal Processing, vol. 60, no. 4, pp. 2055-2060, Apr. 2012, doi: 10.1109/TSP.2011.2181505.
A. E. Zorkun, M. A. Salas-Natera, and R. Martinez Rodriguez-Osorio, "Improved Iterative Inverse Matrix Approximation Algorithm for Zero Forcing Precoding in Large Antenna Arrays," IEEE Access, vol. 10, pp. 100964-100975, 2022, doi: 10.1109/ACCESS.2022.3208155.