Pas de texte intégral
Contribution à des ouvrages collectifs (Parties d’ouvrages)
Introduction to signal processing and machine learning theory
OLIVEIRA KUHFUSS DE MENDONÇA, Marcele; Apolinário, Isabela F.; Diniz, Paulo S.R.
2023In Signal Processing and Machine Learning Theory
Peer reviewed
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
adaptive filters; continuous-time signals and systems; data representation: from multiscale transforms to neural networks; dictionaries in machine learning; digital filter structures and their implementation; discrete-time signals and systems; frames in signal processing; machine learning: review and trends; modern transform design for practical audio/image/video coding applications; multirate signal processing for software radio architectures; nonconvex graph learning: sparsity, heavy tails, and clustering; parametric estimation; random signals and stochastic processes; sampling and quantization; signal processing over graphs; tensor methods in deep learning; Engineering (all); Computer Science (all)
Résumé :
[en] Signal processing and machine learning theories are critical enablers for implementing many amazingly sophisticated technological advances. In this chapter we attempt to provide a brief introduction to some key topics in these dynamic areas, which are further discussed in this book. Together, they create a rich toolbox to pave the way for future societal developments.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
OLIVEIRA KUHFUSS DE MENDONÇA, Marcele  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Apolinário, Isabela F.;  Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Diniz, Paulo S.R.;  Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Introduction to signal processing and machine learning theory
Date de publication/diffusion :
2023
Titre de l'ouvrage principal :
Signal Processing and Machine Learning Theory
Maison d'édition :
Elsevier
ISBN/EAN :
978-0-323-91772-8
978-0-323-97225-3
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 06 janvier 2025

Statistiques


Nombre de vues
81 (dont 0 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
OpenCitations
 
0
citations OpenAlex
 
1

Bibliographie


Publications similaires



Contacter ORBilu