Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Model Generation with LLMs: From Requirements to UML Sequence Diagrams
Ferrari, Alessio; ABUALHAIJA, Sallam; Arora, Chetan
2024In Proceedings - 32nd IEEE International Requirements Engineering Conference Workshops, REW 2024
Peer reviewed
 

Documents


Texte intégral
2024-MODRE-AAF.pdf
Preprint Auteur (880.33 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Natural Language Processing (NLP); Large Language Models (LLMs); Prompt Engineering; ChatGPT; Model Generation; Sequence Diagrams
Résumé :
[en] Complementing natural language (NL) requirements with graphical models can improve stakeholders' communication and provide directions for system design. However, creating models from requirements involves manual effort. The advent of generative large language models (LLMs), ChatGPT being a notable example, offers promising avenues for automated assistance in model generation. This paper investigates the capability of ChatGPT to generate a specific type of model, i.e., UML sequence diagrams, from NL requirements. We conduct a qualitative study in which we examine the sequence diagrams generated by ChatGPT for 28 requirements documents of various types and from different domains. Observations from the analysis of the generated diagrams have systematically been captured through evaluation logs, and categorized through thematic analysis. Our results indicate that, although the models generally conform to the standard and exhibit a reasonable level of understandability, their completeness and correctness with respect to the specified requirements often present challenges. This issue is particularly pronounced in the presence of requirements smells, such as ambiguity and inconsistency. The insights derived from this study can influence the practical utilization of LLMs in the RE process, and open the door to novel RE-specific prompting strategies targeting effective model generation.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Ferrari, Alessio;  Consiglio Nazionale Delle Ricerche (CNR), Italy
ABUALHAIJA, Sallam  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Arora, Chetan;  Monash University, Australia
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Model Generation with LLMs: From Requirements to UML Sequence Diagrams
Date de publication/diffusion :
2024
Nom de la manifestation :
The 14th International Model-Driven Requirements Engineering (MoDRE) workshop
Lieu de la manifestation :
Reykjavik, Islande
Date de la manifestation :
from 24 to 28 June 2024
Titre de l'ouvrage principal :
Proceedings - 32nd IEEE International Requirements Engineering Conference Workshops, REW 2024
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 04 janvier 2025

Statistiques


Nombre de vues
155 (dont 8 Unilu)
Nombre de téléchargements
61 (dont 2 Unilu)

citations Scopus®
 
30
citations Scopus®
sans auto-citations
25
OpenCitations
 
0
citations OpenAlex
 
27

Bibliographie


Publications similaires



Contacter ORBilu