Bini, M., Capsoni, D., Ferrari, S., Quartarone, E., Mustarelli, P., Rechargeable Lithium Batteries, vol. 4, 2015, Elsevier Ltd., 10.1016/B978-1-78242-090-3.00001-8.
Gaines, L., Cuenca, R., Costs of Lithium-Ion Batteries for Vehicles. Aug. 2000, Argonne, IL, 10.2172/761281.
Cooperation, C. for E., Environmentally Sound Management of End-Of-Life Batteries from Electric-Drive Vehicles. 2015, North America.
Roe, C., et al. Immersion Cooling for Lithium-Ion Batteries – A Review. Mar. 30, 2022, Elsevier B.V., 10.1016/j.jpowsour.2022.231094.
Pesaran, A., Battery thermal management in EVs and HEVs : issues and solutions. Advanced Automotive Battery Conference, 2001, 10.
Braun, P.V., Cho, J., Pikul, J.H., King, W.P., Zhang, H., High power rechargeable batteries. Curr. Opin. Solid State Mater. Sci. 16:4 (2012), 186–198, 10.1016/j.cossms.2012.05.002.
Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., He, X., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10 (Jan. 2018), 246–267, 10.1016/J.ENSM.2017.05.013.
Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Chen, C., Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208 (Jun. 2012), 210–224, 10.1016/j.jpowsour.2012.02.038.
Martins, A., Macchi, E., Di Persio, F., Thenaisie, G., “BEPA Safety Task Force Position Paper,”. 2024.
Fleming, J., Amietszajew, T., Charmet, J., Roberts, A.J., Greenwood, D., Bhagat, R., The design and impact of in-situ and operando thermal sensing for smart energy storage. J. Energy Storage 22:October 2018 (2019), 36–43, 10.1016/j.est.2019.01.026.
Cicconi, P., Landi, D., Germani, M., Thermal analysis and simulation of a Li-ion battery pack for a lightweight commercial EV. Appl. Energy 192 (2017), 159–177, 10.1016/j.apenergy.2017.02.008.
Amietszajew, T., et al. Hybrid thermo-electrochemical in situ instrumentation for lithium-ion energy storage. Batter Supercaps 2:11 (2019), 934–940, 10.1002/batt.201900109.
Motloch, Chester G., et al. High-power battery testing procedures and analytical methodologies for HEV's. Future Car Congress, SAE International, Jun. 2002, 10.4271/2002-01-1950.
Wu, B., Yufit, V., Marinescu, M., Offer, G.J., Martinez-Botas, R.F., Brandon, N.P., Coupled thermal–electrochemical modelling of uneven heat generation in lithium-ion battery packs. J. Power Sources 243 (Dec. 2013), 544–554, 10.1016/J.JPOWSOUR.2013.05.164.
Wu, B., Yufit, V., Merla, Y., Martinez-Botas, R.F., Brandon, N.P., Offer, G.J., Differential thermal voltammetry for tracking of degradation in lithium-ion batteries. J. Power Sources 273 (2015), 495–501, 10.1016/j.jpowsour.2014.09.127.
Yeregui, J., Oca, L., Lopetegi, I., Garayalde, E., Aizpurua, M., Iraola, U., State of charge estimation combining physics-based and artificial intelligence models for Lithium-ion batteries. J. Energy Storage, 73, Dec. 2023, 108883, 10.1016/J.EST.2023.108883.
Koshkouei, M.J., Fereshteh Saniee, N., Barai, A., Thermocouple selection and its influence on temperature monitoring of lithium-ion cells. J. Energy Storage, 92(Jul), 2024, 10.1016/j.est.2024.112072.
Lile, C., Yiqun, L., Anomaly detection in thermal images using deep neural networks. 2017 IEEE International Conference on Image Processing (ICIP), Sep. 2017, IEEE, 2299–2303, 10.1109/ICIP.2017.8296692.
Li, X., Li, J., Abdollahi, A., Jones, T., Data-driven thermal anomaly detection for batteries using unsupervised shape clustering. 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Jun. 2021, IEEE, 1–6, 10.1109/ISIE45552.2021.9576348.
Zhang, J., et al. Realistic fault detection of li-ion battery via dynamical deep learning. Nat. Commun., 14(1), Sep. 2023, 5940, 10.1038/s41467-023-41226-5.
Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P., “Towards Total Recall in Industrial Anomaly Detection,”. Jun. 2021.
Liu, Z., Zhou, Y., Xu, Y., Wang, Z., “SimpleNet: A Simple Network for Image Anomaly Detection and Localization,”. Mar. 2023.
Seliya, N., Abdollah Zadeh, A., Khoshgoftaar, T.M., A literature review on one-class classification and its potential applications in big data. J Big Data, 8(1), Sep. 2021, 122, 10.1186/s40537-021-00514-x.
Altmann, Y., Yao, D., McLaughlin, S., Davies, M.E., Robust Linear Regression and Anomaly Detection in the Presence of Poisson Noise Using Expectation-Propagation. 2021, 143–158, 10.1007/978-981-15-9199-0_14.
Zhang et al., “ https://d2l.ai/chapter_multilayer-perceptrons/mlp.html.”.
https://pytorch.org/docs/stable/index.html.”.
Tao, X., Gong, X., Zhang, X., Yan, S., Adak, C., Deep Learning for Unsupervised Anomaly Localization in Industrial Images: A Survey. Jul. 2022, 10.1109/TIM.2022.3196436.
Ehret, T., Davy, A., Morel, J.-M., Delbracio, M., Image Anomalies: a Review and Synthesis of Detection Methods. Aug. 2018, 10.1007/s10851-019-00885-0.
Chalapathy, R., Chawla, S., Deep Learning for Anomaly Detection: A Survey. Jan. 2019.
Ruff, L., et al. A Unifying Review of Deep and Shallow Anomaly Detection. Sep. 2020, 10.1109/JPROC.2021.3052449.
Mohammadi, B., Fathy, M., Sabokrou, M., Image/Video Deep Anomaly Detection. Mar. 2021, A Survey.
Pang, G., Shen, C., Cao, L., van den Hengel, A., Deep learning for anomaly detection. A Review, Jul. 2020, 10.1145/3439950.
Gudovskiy, D., Ishizaka, S., Kozuka, K., CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows. Jul. 2021.
Yu, J., et al. FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows. Nov. 2021.
Bergmann, P., Fauser, M., Sattlegger, D., Steger, C., Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings. Nov. 2019, 10.1109/CVPR42600.2020.00424.
Zavrtanik, V., Kristan, M., Skočaj, D., Reconstruction by inpainting for visual anomaly detection. Pattern Recogn., 112, Apr. 2021, 107706, 10.1016/J.PATCOG.2020.107706.
Wang, G., Han, S., Ding, E., Huang, D., Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection. Jun. 2021.
Defard, T., Setkov, A., Loesch, A., Audigier, R., PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization. Nov. 2020.
Batzner, K., Heckler, L., König, R., EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies. Mar. 2023.
Ahuja, N., Ndiour, I., Kalyanpur, T., Tickoo, O., Probabilistic Modeling of Deep Features for Out-Of-Distribution and Adversarial Detection. Jun. 2019.
Lin, J., Chu, H.N., Howey, D.A., Monroe, C.W., Multiscale coupling of surface temperature with solid diffusion in large lithium-ion pouch cells. Commun. Eng., 1(1), May 2022, 1, 10.1038/s44172-022-00005-8.