CAVINA, Vasco ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
SORET, Ariane ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
ASLYAMOV, Timur ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Ptaszynski, Krzysztof
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Symmetry Shapes Thermodynamics of Macroscopic Quantum Systems
L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics (Elsevier, New York, 2013).
M. Polettini, G. Bulnes-Cuetara, and M. Esposito, Conservation laws and symmetries in stochastic thermodynamics, Phys. Rev. E 94, 052117 (2016). PRESCM 2470-0045 10.1103/PhysRevE.94.052117
R. Rao and M. Esposito, Conservation laws shape dissipation, New J. Phys. 20, 023007 (2018). NJOPFM 1367-2630 10.1088/1367-2630/aaa15f
M. Heyl, Dynamical quantum phase transitions: A review, Rep. Prog. Phys. 81, 054001 (2018). RPPHAG 0034-4885 10.1088/1361-6633/aaaf9a
M. Heyl, Dynamical quantum phase transitions in systems with broken-symmetry phases, Phys. Rev. Lett. 113, 205701 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.205701
S. A. Weidinger, M. Heyl, A. Silva, and M. Knap, Dynamical quantum phase transitions in systems with continuous symmetry breaking, Phys. Rev. B 96, 134313 (2017). PRBMDO 2469-9950 10.1103/PhysRevB.96.134313
C. Aron, G. Biroli, and L. F. Cugliandolo, (Non) equilibrium dynamics: A (broken) symmetry of the Keldysh generating functional, SciPost Phys. 4, 008 (2018). 2542-4653 10.21468/SciPostPhys.4.1.008
Z. Fei and H. T. Quan, Group-theoretical approach to the calculation of quantum work distribution, Phys. Rev. Res. 1, 033175 (2019). PPRHAI 2643-1564 10.1103/PhysRevResearch.1.033175
V. Cavina, S. S. Kadijani, M. Esposito, and T. L. Schmidt, A convenient Keldysh contour for thermodynamically consistent perturbative and semiclassical expansions, SciPost Phys. 15, 209 (2023). 2542-4653 10.21468/SciPostPhys.15.5.209
M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys. Rev. Lett. 120, 200602 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.200602
P. Calabrese, J. Dubail, and S. Murciano, Symmetry-resolved entanglement entropy in Wess-Zumino-Witten models, J. High Energy Phys. 10 (2021) 067. JHEPFG 1029-8479 10.1007/JHEP10(2021)067
G. Gour, D. Jennings, F. Buscemi, R. Duan, and I. Marvian, Quantum majorization and a complete set of entropic conditions for quantum thermodynamics, Nat. Commun. 9, 5352 (2018). NCAOBW 2041-1723 10.1038/s41467-018-06261-7
O. Shpielberg, Universal entanglement entropy in the ground state of biased bipartite systems, Phys. Rev. A 106, L030401 (2022). PLRAAN 2469-9926 10.1103/PhysRevA.106.L030401
T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt, and C. F. Roos, Probing Rényi entanglement entropy via randomized measurements, Science 364, 260 (2019). SCIEAS 0036-8075 10.1126/science.aau4963
J. Decamp, J. Jünemann, M. Albert, M. Rizzi, A. Minguzzi, and P. Vignolo, Strongly correlated one-dimensional Bose-Fermi quantum mixtures: Symmetry and correlations, New J. Phys. 19, 125001 (2017). NJOPFM 1367-2630 10.1088/1367-2630/aa94ef
M. Ueda, Quantum equilibration, thermalization and prethermalization in ultracold atoms, Nat. Rev. Phys. 2, 669 (2020). 2522-5820 10.1038/s42254-020-0237-x
A. Aragoneses, A. Kapulkin, and A. K. Pattanayak, Permutation entropy of indexed ensembles: Quantifying thermalization dynamics, J. Phys. Complex 4, 02LT02 (2023). 10.1088/2632-072X/acd742
X.-J. Yu, S.-H. Shi, L. Xu, and Z.-X. Li, Emergence of competing orders and possible quantum spin liquid in (Equation presented) fermions, Phys. Rev. Lett. 132, 036704 (2024). PRLTAO 0031-9007 10.1103/PhysRevLett.132.036704
B. Yadin, B. Morris, and K. Brandner, Thermodynamics of permutation-invariant quantum many-body systems: A group-theoretical framework, Phys. Rev. Res. 5, 033018 (2023). PPRHAI 2643-1564 10.1103/PhysRevResearch.5.033018
M. Esposito and P. Gaspard, Emergence of diffusion in finite quantum systems, Phys. Rev. B 71, 214302 (2005). PRBMDO 1098-0121 10.1103/PhysRevB.71.214302
M. Esposito and P. Gaspard, Exactly solvable model of quantum diffusion, J. Stat. Phys. 121, 463 (2005). JSTPBS 0022-4715 10.1007/s10955-005-7577-x
G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and H. Weinfurter, Permutationally invariant quantum tomography, Phys. Rev. Lett. 105, 250403 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.105.250403
T. Moroder, P. Hyllus, G. Tóth, C. Schwemmer, A. Niggebaum, S. Gaile, O. Gühne, and H. Weinfurter, Permutationally invariant state reconstruction, New J. Phys. 14, 105001 (2012). NJOPFM 1367-2630 10.1088/1367-2630/14/10/105001
R. Lo Franco and G. Compagno, Indistinguishability of elementary systems as a resource for quantum information processing, Phys. Rev. Lett. 120, 240403 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.240403
N. Shammah, S. Ahmed, N. Lambert, S. De Liberato, and F. Nori, Open quantum systems with local and collective incoherent processes: Efficient numerical simulations using permutational invariance, Phys. Rev. A 98, 063815 (2018). PLRAAN 2469-9926 10.1103/PhysRevA.98.063815
M. B. Mansky, S. L. Castillo, V. R. Puigvert, and C. Linnhoff-Popien, Permutation-invariant quantum circuits, arXiv:2312.14909.
C. Dlaska, K. Ender, G. B. Mbeng, A. Kruckenhauser, W. Lechner, and R. van Bijnen, Quantum optimization via four-body Rydberg gates, Phys. Rev. Lett. 128, 120503 (2022). PRLTAO 0031-9007 10.1103/PhysRevLett.128.120503
R. Islam, R. Ma, P. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, Measuring entanglement entropy in a quantum many-body system, Nature (London) 528, 77 (2015). NATUAS 0028-0836 10.1038/nature15750
F. C. SáBarreto and I. P. Fittipaldi, Thermodynamical properties of the transverse Ising model, Physica (Amsterdam) 129A, 360 (1985). 10.1016/0378-4371(85)90173-6
L. Chayes, N. Crawford, D. Ioffe, and A. Levit, The phase diagram of the quantum Curie-Weiss model, J. Stat. Phys. 133, 131 (2008). JSTPBS 0022-4715 10.1007/s10955-008-9608-x
T. Jörg, F. Krzakala, J. Kurchan, A. C. Maggs, and J. Pujos, Energy gaps in quantum first-order mean-field-like transitions: The problems that quantum annealing cannot solve, Europhys. Lett. 89, 40004 (2010). EULEEJ 0295-5075 10.1209/0295-5075/89/40004
J. Strečka and M. Jaščur, A brief account of the Ising and Ising-like models: Mean-field, effective-field and exact results, Acta Phys. Slovaca 65, 235 (2015); APSVCO 0323-0465
J. Strečka and M. Jaščur arXiv:1511.03031.
H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep. 478, 1 (2009). PRPLCM 0370-1573 10.1016/j.physrep.2009.05.002
G. Falasco and M. Esposito, Macroscopic stochastic thermodynamics, arXiv:2307.12406.
Formally, when we say that a group (Equation presented) acts on the Hilbert space of the system (Equation presented), we mean that there is a group homomorphism between (Equation presented) and (Equation presented), the group of linear invertible operators acting on (Equation presented). To simplify the notation, we will never explicitly write this homomorphism and just treat (Equation presented) as a subgroup of (Equation presented). With this in mind, the elements of (Equation presented) will be accompanied by a hat to remark that they are operators acting on (Equation presented).
W. Fulton and J. Harris, Representation Theory: A First Course (Springer-Verlag, Berlin, 1991).
B. Sagan, The Symmetric Group (Springer, New York, 2001).
The domain of (Equation presented) depends on the group of interest. In the case of the group (Equation presented) it takes the form of a vector, as we will see later.
See Ref. [35].
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2010).
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.133.130401 for more details.
C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27, 379 (1948). BSTJAN 0005-8580 10.1002/j.1538-7305.1948.tb01338.x
P. Pfeuty, The one-dimensional Ising model with a transverse field, Ann. Phys. (N.Y.) 57, 79 (1970). APNYA6 0003-4916 10.1016/0003-4916(70)90270-8
S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, Cambridge, England, 2011).
S. V. Kerov and A. M. Vershik, The characters of the infinite symmetric group and probability properties of the Robinson-Schensted-Knuth algorithm, SIAM J. Algebr. Discrete Methods 7, 116 (1986). SJAMDU 0196-5212 10.1137/0607014
A. Bufetov, M. Zhitlukhin, and N. Kozin, Young Diagrams and Their Limit Shape (MCCME, Moscow, 2013).
A. Nazarov, P. Nikitin, and O. Postnova, Limit shape for infinite rank limit of tensor power decomposition for lie algebras of series (Equation presented), J. Phys. A Math. Theor. 56, 134001 (2023). 10.1088/1751-8121/acbd73
C. Knessl and J. B. Keller, Partition asymptotics from recursion equations, SIAM J. Appl. Math. 50, 323 (1990). SMJMAP 0036-1399 10.1137/0150020
We note that in the literature one often considers systems with collective dissipation processes (due to their computational simplicity), whose evolution preserves the probabilities (Equation presented) [19,25]. In such systems all entropy changes in time are subextensive with the system size.
The number of distinct irreducible representations of a group corresponds to the number of conjugacy classes of that group [36]. For (Equation presented) and for abelian groups in general this corresponds to the number of elements of the group.
This is motivated by the empirical observation that many physical systems display a well-defined macroscopic thermodynamics. If the ground state energy is subextensive, our approach still applies, with (Equation presented) going to zero. Situations where the ground-state energy is superextensive have no well-defined macroscopic thermodynamics, as commonly observed in systems with long-range interactions.
L. D. Landau, Collected Papers of L.D. Landau, edited by D. Ter Haar (Pergamon, Oxford, 1965).
L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Lagrangian phase transitions in nonequilibrium thermodynamic systems, J. Stat. Mech. (2010) L11001. JSMTC6 1742-5468 10.1088/1742-5468/2010/11/L11001
J. P. Garrahan and I. Lesanovsky, Thermodynamics of quantum jump trajectories, Phys. Rev. Lett. 104, 160601 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.104.160601
C. Aron and C. Chamon, Landau theory for non-equilibrium steady states, SciPost Phys. 8, 074 (2020). 2542-4653 10.21468/SciPostPhys.8.5.074
D. S. Wild, S. Drǎgoi, C. McElhanney, J. Wurtz, and S.-T. Wang, Quantum dynamics of a fully blockaded Rydberg atom ensemble, Phys. Rev. A 109, 043111 (2024). PLRAAN 2469-9926 10.1103/PhysRevA.109.043111
G. E. Andrews, The Theory of Partitions (Cambridge University Press, Cambridge, England, 1998).
B. Derrida, Non-equilibrium steady states: Fluctuations and large deviations of the density and of the current, J. Stat. Mech. (2007) P07023. JSMTC6 1742-5468 10.1088/1742-5468/2007/07/P07023
L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, Macroscopic fluctuation theory, Rev. Mod. Phys. 87, 593 (2015). RMPHAT 0034-6861 10.1103/RevModPhys.87.593
D. Bernard, Can the macroscopic fluctuation theory be quantized, J. Phys. A Math. Theor. 54, 433001 (2021). 10.1088/1751-8121/ac2597
T. Herpich, T. Cossetto, G. Falasco, and M. Esposito, Stochastic thermodynamics of all-to-all interacting many-body systems, New J. Phys. 22, 063005 (2020). NJOPFM 1367-2630 10.1088/1367-2630/ab882f
J. Meibohm and M. Esposito, Minimum-dissipation principle for synchronised stochastic oscillators far from equilibrium, arXiv:2401.14982.