Energy community; Grid-charge regulation; Industrial microgrid; Linear optimization; Multi-energy; Asymmetric regulation; Charge regulation; Energy; Industrial energy; Microgrid; Multi energy; Renewable Energy, Sustainability and the Environment; Environmental Science (all); Strategy and Management; Industrial and Manufacturing Engineering
Abstract :
[en] The industrial sector is currently the leading emitter of greenhouse gases worldwide. Lowering emissions, the collaborative use of energy and storage technologies in Industrial Energy Communities (IEC) is a promising option, typically implemented as a grid-connected microgrid. To support successful implementations of IECs, it is essential to understand not only the interaction of different technical assets within an IEC but also the corresponding regulation that determines the IEC's economic and ecological performance. Similar to different technical capabilities of available assets, companies of an IEC are typically affected by regulation in different, asymmetric ways. To the best of our knowledge, we are the first to investigate the economic and ecologic effects stemming from asymmetric regulation, i.e., regulation that differs between different participating companies via a microgrid approach. By developing a novel linear model for German asymmetric grid charge regulation, we are able to optimize the economic operation of complex multi-energy microgrids under detailed regulatory conditions. In more detail, we formulate and implement a mixed-integer linear program to investigate the joint operation of a multi-energy IEC under asymmetric regulation. We conduct a real-world case study to evaluate the effects of German grid-charge regulation as a significant example of asymmetric regulation and compare the results of our IEC to a situation where every company of the IEC manages its assets individually. Our results indicate that IECs have the potential to significantly reduce the total operational energy costs under the current asymmetric German grid-charge regulation. While the shared assets see a higher utilization in the IEC, the impact on emissions is, however, limited.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > FINATRAX - Digital Financial Services and Cross-organizational Digital Transformations
Disciplines :
Computer science
Author, co-author :
Dautzenberg, Alexander ; Branch Business & Information Systems Engineering of the Fraunhofer FIT, Augsburg, Germany ; FIM Research Center, University of Applied Sciences Augsburg, An der Hochschule 1, Augsburg, Germany
Kaiser, Matthias; Branch Business & Information Systems Engineering of the Fraunhofer FIT, Augsburg, Germany ; FIM Research Center, University of Applied Sciences Augsburg, An der Hochschule 1, Augsburg, Germany
WEIBELZAHL, Martin ; University of Luxembourg ; Branch Business & Information Systems Engineering of the Fraunhofer FIT, Augsburg, Germany
Weissflog, Jan; Branch Business & Information Systems Engineering of the Fraunhofer FIT, Augsburg, Germany ; FIM Research Center, University of Bayreuth, Bayreuth, Germany
External co-authors :
yes
Language :
English
Title :
Industrial multi-energy communities as grid-connected microgrids: Understanding the role of asymmetric grid-charge regulation
Allam, Z., Bibri, S.E., Sharpe, S.A., The rising impacts of the COVID-19 pandemic and the Russia–Ukraine war: energy transition, climate justice, global inequality, and supply chain disruption. Resources, 11, 2022, 10.3390/resources11110099.
Alonso García, M.C., Balenzategui, J.L., Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations. Renew. Energy 29 (2004), 1997–2010, 10.1016/j.renene.2004.03.010.
Babilon, L., Battaglia, M., Robers, M., Degel, M., Kahlisch, C., Meyer, J., Oertel, B., Energy Communities: Accelerators of the Decentralised Energy Transition Legal Information. 2022.
Breitschopf, B., Friedrichsen, N., Arens, M., Aydemir, A., Pudlik, M., Duscha, V., Ordonez, J., Lutz, C., Großmann, A., Flaute, M., Electricity Costs of Energy Intensive Industries an International Comparison. 2015.
Bundesamt für Wirtschaft und Ausfuhrkontrolle. Informationsblatt CO 2-Faktoren Bundesförderung für Energie-und Ressourceneffizienz in der Wirtschaft-Zuschuss. 2023.
Bundesamt für Wirtschaft und Ausfuhrkontrolle. Merkblatt zu den technischen Mindestanforderungen - Heizen mit Erneuerbaren Energien. 2020.
Bundesnetzagentur. Monitoringbericht 2021. 2021.
Central Intelligence Agency. The World Factbook 2021. 2021.
Coletta, G., Pellegrino, L., Optimal design of energy communities in the Italian regulatory framework. 2021 AEIT International Annual Conference (AEIT), 2021, IEEE, 1–6, 10.23919/AEIT53387.2021.9626852.
Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Monforti-Ferrario, F., Banja, M., Olivier, J.G.J., Vignati, E., Solazzo, E., Grassi, G., Rossi, S., European commission. GHG Emissions of All World Countries, 2022, Joint Research Centre, 10.2760/173513.
Dawoud, S.M., Lin, X., Okba, M.I., Hybrid renewable microgrid optimization techniques: a review. Renew. Sustain. Energy Rev., 2018, 10.1016/j.rser.2017.08.007.
DWD. Open data. [WWW Document]. URL https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/, 2021 10.18.22.
Fontenot, H., Dong, B., Modeling and control of building-integrated microgrids for optimal energy management – a review. Appl. Energy, 2019, 10.1016/j.apenergy.2019.113689.
Forschungsstelle für Energiewirtschaft e. V. Daily updated specific greenhouse gas emissions of the German electricity mix. [WWW Document]. URL https://opendata.ffe.de/dataset/specific-greenhouse-gas-emissions-of-the-electricity-mix/, 2022 10.18.22.
Forschungsstelle für Energiewirtschaft e. V. Load profiles of the industry sector – Dynamis fuEL scenario (Germany). [WWW Document]. URL https://opendata.ffe.de/dataset/load-profiles-of-the-industry-sector-dynamis-fuel-scenario-germany/, 2020 10.18.22.
Forschungsstelle für Energiewirtschaft e. V. Energy Country Profile Germany. 2020.
Friedrichsen, N., Hilpert, J., Klobasa, M., Sailer, F., Anforderungen der Integration der erneuerbaren Energien an die Netzentgeltregulierung-Diskussion ausgewählter Vorschläge zur Weiterentwicklung des Netzentgelt-und Netznutzungssystems - Zusammenfassung für politische Entscheidungsträger. 2016.
Gao, K., Wang, T., Han, C., Xie, J., Ma, Y., Peng, R., A review of optimization of microgrid operation. Energies, 14, 2021, 10.3390/en14102842.
Günther, D., Gniffke, P., National Inventory Report for the German Greenhouse Gas Inventory 1990 - 2020., 2022.
Hanny, L., Wagner, J., Buhl, H.U., Heffron, R., Körner, M.-F., Schöpf, M., Weibelzahl, M., On the progress in flexibility and grid charges in light of the energy transition: the case of Germany. Energy Pol., 165, 2022, 112882, 10.1016/j.enpol.2022.112882.
Hawkes, A.D., Leach, M.A., Modelling high level system design and unit commitment for a microgrid. Appl. Energy 86 (2009), 1253–1265, 10.1016/j.apenergy.2008.09.006.
Hossain, M.A., Pota, H.R., Squartini, S., Zaman, F., Guerrero, J.M., Energy scheduling of community microgrid with battery cost using particle swarm optimisation. Appl. Energy, 254, 2019, 10.1016/j.apenergy.2019.113723.
Jin, M., Feng, W., Liu, P., Marnay, C., Spanos, C., MOD-DR: microgrid optimal dispatch with demand response. Appl. Energy 187 (2017), 758–776, 10.1016/j.apenergy.2016.11.093.
Klobasa, M., Winkler, J., Sensfuß, F., Ragwitz, M., MARKET INTEGRATION OF RENEWABLE ELECTRICITY GENERATION-THE GERMAN MARKET PREMIUM MODEL. 2013.
Kraft, A., Wärmespeicher 2021. 2021.
Kramer, C., Mühlbauer, A., Praxishandbuch Thermoprozess-Technik: Grundlagen - Verfahren. 2002.
Lamb, W.F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J.G.J., Wiedenhofer, D., Mattioli, G., Khourdajie, A. Al, House, J., Pachauri, S., Figueroa, M., Saheb, Y., Slade, R., Hubacek, K., Sun, L., Ribeiro, S.K., Khennas, S., De La Rue Du Can, S., Chapungu, L., Davis, S.J., Bashmakov, I., Dai, H., Dhakal, S., Tan, X., Geng, Y., Gu, B., Minx, J., A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett., 2021, 10.1088/1748-9326/abee4e.
Lauet, E.G., The measurement of solar spectral irradiance at different terrestrial elevations. Sol. Energy 13 (1970), 43–57.
Lešić, V., Martinčević, A., Vašak, M., Modular energy cost optimization for buildings with integrated microgrid. Appl. Energy 197 (2017), 14–28, 10.1016/j.apenergy.2017.03.087.
LEW Verteilnetz GmbH. Hochlastzeitfenster zur Bestimmung der atypischen Netznutzung nach § 19 Abs. 2 Satz 1 StromNEV – gültig ab 01.01.2021. [WWW Document]. URL https://www.lew-verteilnetz.de/media/2242/lvn-hochlastzeitfenster_2021.pdf, 2020 10.18.22.
Li, Z., Xu, Y., Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes. Appl. Energy 210 (2018), 974–986, 10.1016/j.apenergy.2017.08.197.
Lowitzsch, J., Hoicka, C.E., van Tulder, F.J., Renewable energy communities under the 2019 European Clean Energy Package – governance model for the energy clusters of the future?. Renew. Sustain. Energy Rev., 122, 2020, 10.1016/j.rser.2019.109489.
Martins, M.A.I., Fernandes, R., Heldwein, M.L., Proposals for regulatory framework modifications for microgrid insertion-the Brazil use case. IEEE Access 8 (2020), 94852–94870, 10.1109/ACCESS.2020.2991961.
Mikhaylov, A., Moiseev, N., Aleshin, K., Burkhardt, T., Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues 7:21 (2020), 2897–2913, 10.9770/jesi.2020.7.4.
Milis, K., Peremans, H., Van Passel, S., The impact of policy on microgrid economics: a review. Renew. Sustain. Energy Rev., 2018, 10.1016/j.rser.2017.08.091.
Minuto, F.D., Lanzini, A., Energy-sharing mechanisms for energy community members under different asset ownership schemes and user demand profiles. Renew. Sustain. Energy Rev., 168, 2022, 10.1016/j.rser.2022.112859.
Mishra, D., Nayak, P.C., Prusty, R.C., Panda, S., An improved equilibrium optimization-based fuzzy tilted double integral derivative with filter (F-TIDF-2) controller for frequency regulation of an off-grid microgrid. Electr. Eng. 106 (2024), 2033–2055, 10.1007/s00202-023-02054-4.
Nayak, P.C., Prusty, U.C., Prusty, R.C., Panda, S., Imperialist competitive algorithm optimized cascade controller for load frequency control of multi-microgrid system. Energy Sources, Part A Recovery, Util. Environ. Eff., 2021, 10.1080/15567036.2021.1897710.
Osterwald, C.R., Translation of device performance measurements to reference conditions. Sol. Cell. 18 (1986), 269–279, 10.1016/0379-6787(86)90126-2.
Publications Office of the European Union. Clean energy for all Europeans Package. https://doi.org/10.2833/21366, 2019.
Ramli, M.A.M., Bouchekara, H.R.E.H., Alghamdi, A.S., Efficient energy management in a microgrid with intermittent renewable energy and storage sources. Sustainability, 11, 2019, 10.3390/su11143839.
Ricerca, A.G., Energetico, S., Ricerca, C.S., Corsetti, E., Guagliardi, A.G., Microgrid as a Technological Mean to Multi-Energy Communities Penetration. 2018.
Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W.R., Zhou, N., Elliott, N., Dell, R., Heeren, N., Huckestein, B., Cresko, J., Miller, S.A., Roy, J., Fennell, P., Cremmins, B., Koch Blank, T., Hone, D., Williams, E.D., de la Rue du Can, S., Sisson, B., Williams, M., Katzenberger, J., Burtraw, D., Sethi, G., Ping, H., Danielson, D., Lu, H., Lorber, T., Dinkel, J., Helseth, J., Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy, 266, 2020, 114848, 10.1016/j.apenergy.2020.114848.
Schütz, T., Streblow, R., Müller, D., A comparison of thermal energy storage models for building energy system optimization. Energy Build. 93 (2015), 23–31, 10.1016/j.enbuild.2015.02.031.
Shi, M., Wang, H., Lyu, C., Xie, P., Xu, Z., Jia, Y., A hybrid model of energy scheduling for integrated multi-energy microgrid with hydrogen and heat storage system. Energy Rep. 7 (2021), 357–368, 10.1016/j.egyr.2021.08.037.
Sterner, M., Stadler, I., Energiespeicher - Bedarf, Technologien, Integration. 2014, Springer, Berlin Heidelberg, Berlin, Heidelberg, 10.1007/978-3-642-37380-0.
Stewart, G.R., Measurement of low-temperature specific heat. Rev. Sci. Instrum. 54 (1983), 1–11, 10.1063/1.1137207.
The European Parliament and the Council of the European union. Directive (EU) 2018/2001 of the European Parliament and the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. 2018.
Tiemann, P.H., Bensmann, A., Stuke, V., Hanke-Rauschenbach, R., Electrical energy storage for industrial grid fee reduction – a large scale analysis. Energy Convers. Manag., 208, 2020, 10.1016/j.enconman.2020.112539.
Trading Economics. Natural Gas EU Dutch TTF. 2021 [WWW Document]. URL https://tradingeconomics.com/commodity/eu-natural-gas 10.18.22.
van der Kam, M., van Sark, W., Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study. Appl. Energy 152 (2015), 20–30, 10.1016/j.apenergy.2015.04.092.
Yan, B., Di Somma, M., Luh, P.B., Graditi, G., Operation optimization of multiple distributed energy systems in an energy community. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 2018, IEEE, 1–6, 10.1109/EEEIC.2018.8494476.
Zhang, Y., Meng, F., Wang, R., Kazemtabrizi, B., Shi, J., Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid. Energy 179 (2019), 1265–1278, 10.1016/j.energy.2019.04.151.
Zimmermann, F., Wurster, A., Sauer, A., Sizing electric storage system for atypical grid usage of industrial consumers. CONFERENCE ON PRODUCTION SYSTEMS AND LOGISTICS, 2020, 10.15488/9666.