Process mining; Prescriptive process monitoring; Energy flexibility; Demand side management
Résumé :
[en] The transition from fossil fuels to renewable energy sources poses major challenges for balancing increasingly weather-dependent power supply and demand. Although demand-side energy flexibility, offered particularly by industrial companies, is seen as a promising and necessary approach to address these challenges and realize benefits for companies, its implementation is not yet common practice. Often facing highly complex process landscapes and operational systems, process mining provides significant potential to increase transparency of actual process flows and to discover or reflect existing dependencies and interrelationships of activities, instances or resources. It facilitates the implementation of energy flexibility measures and enables the realization of monetary benefits associated with flexible process operation. This paper contributes to the successful integration of energy flexibility into process operations by presenting a design science research artifact called PM4Flex. This is a prescriptive process monitoring approach that uses linear programming to generate recommendations for pending process flows optimized under fluctuating power prices by utilizing established energy flexibility measures. Thereby, event logs and corresponding company-as well as processspecific constraints are considered. PM4Flex is demonstrated and evaluated based on its implementation as a software prototype, its application to exemplary data from two real-world processes exhibiting power cost savings of up to 75% compared to the original execution, and based on semi-structured expert interviews. PM4Flex provides new design knowledge at the interface of prescriptive process monitoring and the energy domain providing decision support to optimize industrial energy procurement costs.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > FINATRAX - Digital Financial Services and Cross-organizational Digital Transformations
C.C. Aggarwal Recommender systems 2016 Cham Springer 10.1007/978-3-319-29659-3
M. Alcázar-Ortega C. Calpe T. Theisen J.F. Carbonell-Carretero Methodology for the identification, evaluation and prioritization of market handicaps which prevent the implementation of demand response: application to European electricity markets Energy Policy 2015 86 529 543 10.1016/j.enpol.2015.08.006
Anderson KD, Berges ME, Ocneanu A, Benitez D, Moura JM (2012) Event detection for non intrusive load monitoring. In: 38th Annual Conference on IEEE Industrial Electronics Society, pp 3312–3317
A. Asadinejad K. Tomsovic Optimal use of incentive and price based demand response to reduce costs and price volatility Electr Power Syst Res 2017 144 215 223 10.1016/j.epsr.2016.12.012
Bachmann A, Bank L, Bark C, Bauer D, Dietz B, et al. (2021) Energieflexibel in die Zukunft: Wie Fabriken zum Gelingen der Energiewende beitragen können. VDI_Handlungsempfehlung Oktober 2021. Fraunhofer-Gesellschaft
P. Badakhshan B. Wurm T. Grisold J. Geyer-Klingeberg J. Mendling et al. Creating business value with process mining J Strateg Inf Syst 2022 31 10.1016/j.jsis.2022.101745
Bahmani R, van Stiphoudt C, Menci SP, Schöpf M, Fridgen G (2022) Optimal industrial flexibility scheduling based on generic data format. Energy Inform 5. https://doi.org/10.1186/s42162-022-00198-4
Bank L, Wenninger S, Köberlein J, Lindner M, Kaymakci C, et al. (2021) Integrating energy flexibility in production planning and control – an energy flexibility data model-based approach. publish-Ing, Hannover
I. Barba B. Weber C. Del Valle F. Daniel K. Barkaoui S. Dustdar Supporting the optimized execution of business processes through recommendations Business process management workshops 2012 Heidelberg Springer 135 140 10.1007/978-3-642-28108-2_12
J. Beier S. Thiede C. Herrmann Energy flexibility of manufacturing systems for variable renewable energy supply integration: real-time control method and simulation J Clean Prod 2017 141 648 661 10.1016/j.jclepro.2016.09.040
A. Berti S.J. van Zelst W.M.P. van der Aalst Process Mining for Python (PM4Py): Bridging the Gap Between Process-and Data Science Comput Res Repos 2019 10.48550/arXiv.1905.06169
Bozorgi ZD, Teinemaa I, Dumas M, Rosa ML, Polyvyanyy A (2021) Prescriptive process monitoring for cost-aware cycle time reduction. 3rd International Conference on Process Mining, Eindhoven, pp 96–103. https://doi.org/10.1109/ICPM53251.2021.9576853
Bozorgi ZD, Dumas M, La Rosa M, Polyvyanyy A, Shoush M, Teinemaa I (2023) Learning when to treat business processes: prescriptive process monitoring with causal inference and reinforcement learning. In: Indulska M, et al (eds) Advanced information systems engineering, vol 13901. Springer, Cham, pp 364–380
S. Branchi C. Di Francescomarino C. Ghidini D. Massimo F. Ricci M. Ronzani Learning to Act: A Reinforcement Learning Approach to Recommend the Best Next Activities Business Process Management Forum 2022 10.1007/978-3-031-16171-1_9
Brooks S, Wang X, Sarker S (2012) Unpacking green IS: a review of the existing literature and directions for the future. In: vom Brocke J, et al (eds) Green business process management: towards the sustainable enterprise. Springer, Heidelberg
Buhl HU, Fridgen G, Körner MF, Michaelis A, Rägo V, et al. (2019) Ausgangsbedingungen für die Vermarktung von Nachfrageflexibilität: Status-Quo-Analyse und Metastudie. 2 Fassung. https://doi.org/10.15495/EPub_UBT_00004455
R. Conforti M. de Leoni M. La Rosa W.M. van der Aalst A.H. Hofstede A recommendation system for predicting risks across multiple business process instances Decis Support Syst 2015 69 1 19 10.1016/j.dss.2014.10.006
D. Couckuyt A. Van Looy A systematic review of green business process management Bus Proc Manag J 2020 26 421 446 10.1108/BPMJ-03-2019-0106
M.F. de Godoy D.R. Filho Facing the BANI world Int J Nutrology 2021 14 e33 e33 10.1055/s-0041-1735848
M. Dees M. de Leoni W.M.P. van der Aalst H.A. Reijers What if Process Predictions are not followed by Good Recommendations? Computing Research Repository (CoRR) 2019 10.48550/arXiv.1905.10173
I. Donadello C. Di Francescomarino F.M. Maggi F. Ricci A. Shikhizada Outcome-Oriented Prescriptive Process Monitoring based on Temporal Logic Patterns Eng Appl Artif Intell 2023 10.1016/j.engappai.2023.106899
C. Dorn T. Burkhart D. Werth S. Dustdar et al. D. Hutchison et al. Self-adjusting recommendations for people-driven ad-hoc processes Business process management 2010 Heidelberg Springer 327 342 10.1007/978-3-642-15618-2_23
S. Dreher P. Reimann C. Gröger Application Fields and Research Gaps of Process Mining in Manufacturing Companies INFORMATIK 2020 2021 10.18420/inf2020_55
M. Dumas Business process management 2008 Heidelberg Springer
M. Dumas M. La Rosa J. Mendling H.A. Reijers Fundamentals of business process management 2018 Heidelberg Springer 10.1007/978-3-662-56509-4
G. Dutta K. Mitra A literature review on dynamic pricing of electricity J Oper Res Soc 2017 68 1131 1145 10.1057/s41274-016-0149-4
Eili MY, Rezaeenour J, Sani MF (2021) A systematic literature review on process-aware recommender systems. https://doi.org/10.48550/ARXIV.2103.16654
Eurelectric (2014) Flexibility and aggregation requirements for their interaction in the market: a Eurelectric paper. https://www.usef.energy/app/uploads/2016/12/EURELECTRIC-Flexibility-and-Aggregation-jan-2014.pdf. Accessed 16 Nov 2022
R. Förster M. Kaiser S. Wenninger Future vehicle energy supply – sustainable design and operation of hybrid hydrogen and electric microgrids Appl Energy 2023 334 10.1016/j.apenergy.2023.120653
García S, Luengo J, Herrera F (2015) Data preprocessing in data mining. Intelligent systems reference library, vol 72. Springer, Cham
García S, Ramírez-Gallego S, Luengo J, Benítez JM, Herrera F (2016) Big data preprocessing: methods and prospects. Big Data Analytics 1. https://doi.org/10.1186/s41044-016-0014-0
Gregor S, Hevner AR (2013) Positioning and presenting design science research for maximum impact. MIS Q 37:337–355. https://doi.org/10.25300/MISQ/2013/37.2.01
Gregor S, Kruse L, Seidel S (2020) Research perspectives: the anatomy of a design principle. J Assoc Inf Syst 21:1622–1652. https://doi.org/10.17705/1jais.00649
S. Gross K. Stelzl T. Grisold J. Mendling M. Röglinger et al. The business process design space for exploring process redesign alternatives Bus Proc Manag J 2021 27 25 56 10.1108/BPMJ-03-2020-0116
Gunning D, Stefik M, Choi J, Miller T, Stumpf S (2019) XAI-explainable artificial intelligence. Sci Robot 4. https://doi.org/10.1126/scirobotics.aay7120
A.F. Harmsen Situational method engineering 1997 Utrecht Moret Ernst & Young Management Consultants
R. Heffron M.-F. Körner J. Wagner M. Weibelzahl G. Fridgen Industrial demand-side flexibility: a key element of a just energy transition and industrial development Appl Energy 2020 269 10.1016/j.apenergy.2020.115026
Hehnle P, Behrendt M, Weinbrecht L, Corea C (2024) Carbon-aware process execution for green business process management. In: Proceedings of the 26th International Conference on Enterprise Information Systems. Scitepress, pp 659–666
B. Henderson-Sellers J. Ralyté Situational method engineering: state-of-the-art review J Univers Comput Sci 2010 10.3217/jucs-016-03-0424
Hermann J, Rusche S, Moder L, Weibelzahl M (2023) Stay flexible: a prescriptive process monitoring approach for energy flexibility-oriented process schedules. In: EUROPEAN CONFERENCE ON INFORMATION SYSTEMS, 2023 Research Papers. https://aisel.aisnet.org/ecis2023_rp/396/
Herwix A, Haj-Bolouri A (2021) Revisiting the problem of the problem – an ontology and framework for problem assessment in IS research. In: European Conference on Information Systems, Research Papers. https://aisel.aisnet.org/ecis2021_rp/154
A. Hevner S. Chatterjee Design research in information systems: theory and practice 2010 Boston Springer
A. Hevner S. March J. Park S. Ram Design science in information systems research MIS Q 2004 28 75 10.2307/25148625
S. Hitz J. Smith Estimating global impacts from climate change Glob Environ Chang 2004 14 201 218 10.1016/j.gloenvcha.2004.04.010
Kotsias S, Kerasiotis A, Bousdekis A, Theodoropoulou G, Miaoulis G (2023) Predictive and prescriptive business process monitoring with reinforcement learning. In: Krouska A, et al (eds) Novel & Intelligent Digital Systems: Proceedings of the 2nd International Conference, vol 556. Springer, Cham, pp 245–254
T. Kreuzer M. Röglinger L. Rupprecht Customer-centric prioritization of process improvement projects Decis Support Syst 2020 133 10.1016/j.dss.2020.113286
K. Kubrak F. Milani A. Nolte M. Dumas Prescriptive process monitoring: Quo vadis? PeerJ Computer Science 2022 8 10.7717/peerj-cs.1097
C. Leinauer P. Schott G. Fridgen R. Keller P. Ollig et al. Obstacles to demand response: why industrial companies do not adapt their power consumption to volatile power generation Energy Policy 2022 165 10.1016/j.enpol.2022.112876
W. Li H. Dai D. Zhang The relationship between maximum completion time and total completion time in flowshop production Procedia Manuf 2015 1 146 156 10.1016/j.promfg.2015.09.077
R. Lu Y.-C. Li Y. Li J. Jiang Y. Ding Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management Appl Energy 2020 276 10.1016/j.apenergy.2020.115473
A. Maedche S. Gregor S. Morana J. Feine B. Tulu S. Djamasbi G. Leroy Conceptualization of the problem space in design science research Extending the boundaries of design science theory and practice 2019 Cham Springer 18 31 10.1007/978-3-030-19504-5_2
S.T. March G.F. Smith Design and natural science research on information technology Decis Support Syst 1995 15 251 266 10.1016/0167-9236(94)00041-2
H.M. Marin-Castro E. Tello-Leal Event log preprocessing for process mining: a review Appl Sci 2021 11 10556 10.3390/app112210556
S. Mitra J.M. Pinto I.E. Grossmann Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty Part i: Modeling Comput Chem Eng 2014 65 89 101 10.1016/j.compchemeng.2014.01.016
S. Mitra J.M. Pinto I.E. Grossmann Optimal multi-scale capacity planning for power-intensive continuous processes under time-sensitive electricity prices and demand uncertainty. Part II: enhanced hybrid bi-level decomposition Comput Chem Eng 2014 65 102 111 10.1016/j.compchemeng.2014.02.012
Mohler D, Sowder D (2017) Energy storage and the need for flexibility on the grid. In: Renewable Energy Integration. Elsevier, pp 309–316. https://doi.org/10.1016/B978-0-12-809592-8.00023-8
F. Müsgens A. Ockenfels M. Peek Economics and design of balancing power markets in Germany Int J Electr Power Energy Syst 2014 55 392 401 10.1016/j.ijepes.2013.09.020
A. Nayak S. Lee J.W. Sutherland Dynamic load scheduling for energy efficiency in a job shop with on-site wind mill for energy generation Procedia CIRP 2019 80 197 202 10.1016/j.procir.2018.12.003
G. Papaefthymiou E. Haesen T. Sach Power system flexibility tracker: indicators to track flexibility progress towards high-RES systems Renew Energy 2018 127 1026 1035 10.1016/j.renene.2018.04.094
Papaefthymiou G, Grave K, Dragoon K (2014) Flexibility options in electricity systems. https://www.ourenergypolicy.org/wp-content/uploads/2014/06/Ecofys.pdf. Accessed 16 Nov 2022
C. Pape S. Hagemann C. Weber Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market Energy Econ 2016 54 376 387 10.1016/j.eneco.2015.12.013
G. Park D. Schuster W.M. van der Aalst Pattern-based action engine: generating process management actions using temporal patterns of process-centric problems Comput Ind 2023 153 10.1016/j.compind.2023.104020
K. Peffers T. Tuunanen M.A. Rothenberger S. Chatterjee A design science research methodology for information systems research J Manag Inf Syst 2007 24 45 77 10.2753/MIS0742-1222240302
R. Petrusel P.L. Stanciu et al. W. Abramowicz et al. Making recommendations for decision processes based on aggregated decision data models Business Information Systems: Proceedings 15th International Conference, Vilnius 2012 Heidelberg Springer 272 283 10.1007/978-3-642-30359-3_24
D. Ramin S. Spinelli A. Brusaferri Demand-side management via optimal production scheduling in power-intensive industries: the case of metal casting process Appl Energy 2018 225 622 636 10.1016/j.apenergy.2018.03.084
M. Röglinger R. Plattfaut V. Borghoff G. Kerpedzhiev J. Becker Exogenous shocks and business process management Bus Inf Syst Eng 2022 64 669 687 10.1007/s12599-021-00740-w
R. Ruiz C. Maroto A comprehensive review and evaluation of permutation flowshop heuristics Eur J Oper Res 2005 165 479 494 10.1016/j.ejor.2004.04.017
S. Rusche J. Weissflog S. Wenninger B. Häckel How flexible are energy flexibilities? Developing a flexibility score for revenue and risk analysis in industrial demand-side management Appl Energy 2023 345 10.1016/j.apenergy.2023.121351
A. Sauer E. Abele H.U. Buhl Energieflexibilität in der deutschen Industrie: Ergebnisse aus dem Kopernikus-Projekt – Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung - SynErgie 2019 Stuttgart Fraunhofer Verlag
J. Schobel M. Reichert et al. G. Grambow et al. A predictive approach enabling process execution recommendations Advances in intelligent process-aware information systems: concepts, methods, and technologies 2017 Cham Springer 155 170 10.1007/978-3-319-52181-7_6
H. Schonenberg B. Weber B. van Dongen W. van der Aalst M. Dumas Supporting flexible processes through recommendations based on history Business process management 2008 Heidelberg Springer 51 66 10.1007/978-3-540-85758-7_7
P. Schott J. Sedlmeir N. Strobel T. Weber G. Fridgen et al. A Generic data model for describing flexibility in power markets Energies 2019 12 1893 10.3390/en12101893
C. Schultz P. Sellmaier G. Reinhart An approach for energy-oriented production control using energy flexibility Procedia CIRP 2015 29 197 202 10.1016/j.procir.2015.02.038
Schultz CM (2018) System zur energieorientierten Produktionssteuerung in der auftragsbezogenen Fertigung. Dissertation, Technische Universität München
Seidel S, Recker J, vom Brocke J (2012) Green business process management. In: vom Brocke J, Seidel S, Recker J (eds) Green business process management: towards the sustainable enterprise. Springer, Heidelberg
Shoush M, Dumas M (2022b) When to intervene? Prescriptive process monitoring under uncertainty and resource constraints. In: 20th International Conference on Business Process Management, pp 207–223
M. Shoush M. Dumas J. Munoz-Gama X. Lu Prescriptive process monitoring under resource constraints: a causal inference approach Process mining workshops: International Workshops, Eindhoven: revised selected papers 2022 Cham Springer 180 193
C. Sonnenberg J. vom Brocke M. Helfert B. Donnellan Evaluation patterns for design science research artefacts Practical aspects of design science 2012 Heidelberg Springer 71 83 10.1007/978-3-642-33681-2_7
Z. Sun L. Li Potential capability estimation for real time electricity demand response of sustainable manufacturing systems using Markov decision process J Clean Prod 2014 65 184 193 10.1016/j.jclepro.2013.08.033
Tan M, Yang H, Duan B, Su Y, He F (2017) Optimizing production scheduling of steel plate hot rolling for economic load dispatch under time-of-use electricity pricing. In: Mathematical problems in engineering. https://doi.org/10.1155/2017/1048081
D.J. Teece G. Pisano A. Shuen Dynamic capabilities and strategic management Strateg Manag J 1997 18 509 533 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z
I. Teinemaa N. Tax M. de Leoni M. Dumas F.M. Maggi et al. M. Weske et al. Alarm-based prescriptive process monitoring Business Process Management Forum 2018 Cham Springer 91 107 10.1007/978-3-319-98651-7_6
Terragni A, Hassani M (2018) Analyzing customer journey with process mining: from discovery to recommendations. In: Younas M, Disso JP: IEEE 6th International Conference on Future Internet of Things and Cloud – FiCloud, Barcelona, pp 224–229
R.S.J. Tol The economic impacts of climate change Rev Envir Econ Policy 2018 12 4 25 10.1093/reep/rex027
S. Triki N.B.B. Saoud J. Dugdale C. Hanachi S. Reddy Coupling case based reasoning and process mining for a web based crisis management decision support system 2013 Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises 2013 Hammamet IEEE 245 252 10.1109/WETICE.2013.77
A. Tristán F. Heuberger A. Sauer A methodology to systematically identify and characterize energy flexibility measures in industrial systems Energies 2020 13 5887 10.3390/en13225887
W.M.P. van der Aalst Process mining 2011 Heidelberg Springer 10.1007/978-3-642-19345-3
van der Aalst W, Adriansyah A, de Medeiros AKA, Arcieri F, Baier T, et al. (2012) Process Mining Manifesto. In: Daniel F, et al: Business Process Management Workshops, Springer, Heidelberg, pp 169–194. https://doi.org/10.1007/978-3-642-28108-2_19
van der Aalst WMP (2013) Business process management: a comprehensive survey. In: ISRN Software Engineering, Wiley. https://doi.org/10.1155/2013/507984
W.M.P. van der Aalst M. Pesic M. Song et al. D. Hutchison et al. Beyond process mining: from the past to present and future Business process management 2010 Heidelberg Springer 38 52
A. Van Looy A. Shafagatova Business process performance measurement: a structured literature review of indicators, measures and metrics Springerplus 2016 5 1797 10.1186/s40064-016-3498-1
J. Venable J. Pries-Heje R. Baskerville FEDS: a framework for evaluation in design science research Eur J Inf Syst 2016 25 1 77 89 10.1057/ejis.2014.36
Weinzierl S, Stierle M, Zilker S, Matzner M (2020a) A next click recommender system for web-based service analytics with context-aware LSTMs. In: Bui T (ed) Proceedings of the 53rd HICSS
Weinzierl S, Dunzer S, Zilker S, Matzner M (2020b) Prescriptive business process monitoring for recommending next best actions. In: Fahland D, et al (eds) Business Process Management Forum, Seville. Springer Nature, pp 193–209
Wirth R, Hipp J (2000) CRISP-DM: towards a standard process model for data mining. Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining
Yang S, Dong X, Sun L, Zhou Y, Farneth RA, et al. (2017) A data-driven process recommender framework. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 2111–2120. https://doi.org/10.1145/3097983.3098174
Q. Zhang I.E. Grossmann Enterprise-wide optimization for industrial demand side management: fundamentals, advances, and perspectives Chem Eng Res Design 2016 116 114 131 10.1016/j.cherd.2016.10.006
Q. Zhang I.E. Grossmann M. Martín Planning and scheduling for industrial demand side management: advances and challenges Alternative energy sources and technologies 2016 Cham Springer 383 414 10.1007/978-3-319-28752-2_14
Q. Zhang J.L. Cremer I.E. Grossmann A. Sundaramoorthy J.M. Pinto Risk-based integrated production scheduling and electricity procurement for continuous power-intensive processes Comput Chem Eng 2016 86 90 105 10.1016/j.compchemeng.2015.12.015
Zhou Z, Li L (2013) Real time electricity demand response for sustainable manufacturing systems considering throughput bottleneck detection. In: 2013 IEEE International Conference on Automation Science and Engineering, pp 640–644