anthropomorphic robotic eyes; effectiveness; emotion recognition; facial expression; healthcare; human-robot interaction; non-verbal communication; social robots; structural design; Emotions; Facial Expression; Humans; Movement; Robotic Surgical Procedures; Robotics; Anthropomorphic robotic eye; Design communication; Facial Expressions; Human eye; Humans-robot interactions; Mechanical systems; Non-verbal communications; Analytical Chemistry; Information Systems; Atomic and Molecular Physics, and Optics; Biochemistry; Instrumentation; Electrical and Electronic Engineering
Abstract :
[en] This paper shows the structure of a mechanical system with 9 DOFs for driving robot eyes, as well as the system's ability to produce facial expressions. It consists of three subsystems which enable the motion of the eyeballs, eyelids, and eyebrows independently to the rest of the face. Due to its structure, the mechanical system of the eyeballs is able to reproduce all of the motions human eyes are capable of, which is an important condition for the realization of binocular function of the artificial robot eyes, as well as stereovision. From a kinematic standpoint, the mechanical systems of the eyeballs, eyelids, and eyebrows are highly capable of generating the movements of the human eye. The structure of a control system is proposed with the goal of realizing the desired motion of the output links of the mechanical systems. The success of the mechanical system is also rated on how well it enables the robot to generate non-verbal emotional content, which is why an experiment was conducted. Due to this, the face of the human-like robot MARKO was used, covered with a face mask to aid in focusing the participants on the eye region. The participants evaluated the efficiency of the robot's non-verbal communication, with certain emotions achieving a high rate of recognition.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Penčić, Marko ; Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
Čavić, Maja; Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
Oros, Dragana ; Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
Vrgović, Petar ; Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
Babković, Kalman; Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
OROSNJAK, Marko ; Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
Čavić, Dijana; Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
External co-authors :
yes
Language :
English
Title :
Anthropomorphic Robotic Eyes: Structural Design and Non-Verbal Communication Effectiveness.
Acknowledgments: This research is supported by a scientific and technical cooperation between the Republic of Serbia and the People’s Republic of China through the project “The Development of a Socially Assistive Robot as a Key Technology in the Rehabilitation of Children with Cerebral Palsy”, under the contract 451-02-818/2021-09/19. We would like to thank Zhenli Lu, from the School of Electrical Engineering and Automation, Changshu Institute of Technology, People’s Republic of China, for his assistance in forming this paper and for providing constructive feedback which we happily adopted.
Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278–280. [CrossRef] [PubMed]
Coronavirus Worldometers Internet. Available online: https://www.worldometers.info/coronavirus/(accessed on 18 January 2022).
Armocida, B.; Formenti, B.; Ussai, S.; Palestra, F.; Missoni, E. The Italian health system and the COVID-19 challenge. Lancet Public Health 2020, 5, e253. [CrossRef]
Kramer, V.; Papazova, I.; Thoma, A.; Kunz, M.; Falkai, P.; Schneider-Axmann, T.; Hierundar, A.; Wagner, E.; Hasan, A. Subjective burden and perspectives of German healthcare workers during the COVID-19 pandemic. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 271–281. [CrossRef] [PubMed]
Legido-Quigley, H.; Mateos-García, J.T.; Campos, V.R.; Gea-Sánchez, M.; Muntaner, C.; McKee, M. The resilience of the Spanish health system against the COVID-19 pandemic. Lancet Public Health 2020, 5, e251–e252. [CrossRef]
Vindrola-Padros, C.; Andrews, L.; Dowrick, A.; Djellouli, N.; Fillmore, H.; Gonzalez, E.B.; Javadi, D.; Lewis-Jackson, S.; Manby, L.; Mitchinson, L.; et al. Perceptions and experiences of healthcare workers during the COVID-19 pandemic in the UK. BMJ Open 2020, 10, e040503. [CrossRef]
Peiffer-Smadja, N.; Lucet, J.-C.; Bendjelloul, G.; Bouadma, L.; Gerard, S.; Choquet, C.; Jacques, S.; Khalil, A.; Maisani, P.; Casalino, E.; et al. Challenges and issues about organizing a hospital to respond to the COVID-19 outbreak: Experience from a French reference centre. Clin. Microbiol. Infect. 2020, 26, 669–672. [CrossRef]
Ripp, J.; Peccoralo, L.; Charney, D. Attending to the Emotional Well-Being of the Health Care Workforce in a New York City Health System during the COVID-19 Pandemic. Acad. Med. 2020, 95, 1136–1139. [CrossRef]
Varanda, J.; Gonçalves, L.; Craveiro, I. The Unlikely Saviour: Portugal’s National Health System and the Initial Impact of the COVID-19 Pandemic? Development 2020, 63, 291–297. [CrossRef]
Giannopoulou, I.; Tsobanoglou, G.O. COVID-19 pandemic: Challenges and opportunities for the Greek health care system. Ir. J. Psychol. Med. 2020, 37, 226–230. [CrossRef]
Bhatia, R.; Khetrapal, S. Impact of COVID-19 pandemic on health system & Sustainable Development Goal 3. Indian J. Med. Res. 2020, 151, 395–399. [CrossRef]
Misra-Hebert, A.D.; Jehi, L.; Ji, X.; Nowacki, A.S.; Gordon, S.; Terpeluk, P.; Chung, M.K.; Mehra, R.; Dell, K.M.; Pennell, N.; et al. Impact of the COVID-19 Pandemic on Healthcare Workers’ Risk of Infection and Outcomes in a Large, Integrated Health System. J. Gen. Intern. Med. 2020, 35, 3293–3301. [CrossRef] [PubMed]
Walton, M.; Murray, E.; Christian, M.D. Mental health care for medical staff and affiliated healthcare workers during the COVID-19 pandemic. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 241–247. [CrossRef] [PubMed]
Ornell, F.; Halpern, S.C.; Kessler, F.H.P.; Narvaez, J.C.D.M. The impact of the COVID-19 pandemic on the mental health of healthcare professionals. Cad. De Saúde Pública 2020, 36, e00063520. [CrossRef] [PubMed]
Chatzittofis, A.; Karanikola, M.; Michailidou, K.; Constantinidou, A. Impact of the COVID-19 Pandemic on the Mental Health of Healthcare Workers. Int. J. Environ. Res. Public Health 2021, 18, 1435. [CrossRef]
Galbraith, N.; Boyda, D.; McFeeters, D.; Hassan, T. The mental health of doctors during the COVID-19 pandemic. BJPsych Bull. 2021, 45, 93–97. [CrossRef]
Da Silva, S.J.R.; Pena, L. Collapse of the public health system and the emergence of new variants during the second wave of the COVID-19 pandemic in Brazil. One Health 2021, 13, 100287. [CrossRef]
Rocha, I.C.N.; Hasan, M.M.; Goyal, S.; Patel, T.; Jain, S.; Ghosh, A.; Cedeño, T.D.D. COVID-19 and mucormycosis syndemic: Double health threat to a collapsing healthcare system in India. Trop. Med. Int. Health 2021, 26, 1016–1018. [CrossRef]
Tulenko, K.; Vervoort, D. Cracks in the System: The Effects of the Coronavirus Pandemic on Public Health Systems. Am. Rev. Public Adm. 2020, 50, 455–466. [CrossRef]
Lemos, D.R.Q.; D’Angelo, S.M.; Farias, L.A.B.G.; Almeida, M.M.; Gomes, R.G.; Pinto, G.P.; Filho, J.N.C.; Feijão, L.X.; Cardoso, A.R.P.; Lima, T.B.R.; et al. Health system collapse 45 days after the detection of COVID-19 in Ceará, Northeast Brazil: A preliminary analysis. Rev. da Soc. Bras. de Med. Trop. 2020, 53, e20200354. [CrossRef]
Requia, W.J.; Kondo, E.K.; Adams, M.D.; Gold, D.R.; Struchiner, C.J. Risk of the Brazilian health care system over 5572 municipalities to exceed health care capacity due to the 2019 novel coronavirus (COVID-19). Sci. Total Environ. 2020, 730, 139144. [CrossRef]
Ren, X. Pandemic and lockdown: A territorial approach to COVID-19 in China, Italy and the United States. Eurasian Geogr. Econ. 2020, 61, 423–434. [CrossRef]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef] [PubMed]
Jacob, L.; Loosen, S.H.; Kalder, M.; Luedde, T.; Roderburg, C.; Kostev, K. Impact of the COVID-19 Pandemic on Cancer Diagnoses in General and Specialized Practices in Germany. Cancers 2021, 13, 408. [CrossRef] [PubMed]
Ruiz-Medina, S.; Gil, S.; Jimenez, B.; Rodriguez-Brazzarola, P.; Diaz-Redondo, T.; Cazorla, M.; Muñoz-Ayllon, M.; Ramos, I.; Reyna, C.; Bermejo, M.; et al. Significant Decrease in Annual Cancer Diagnoses in Spain during the COVID-19 Pandemic: A Real-Data Study. Cancers 2021, 13, 3215. [CrossRef] [PubMed]
Maringe, C.; Spicer, J.; Morris, M.; Purushotham, A.; Nolte, E.; Sullivan, R.; Rachet, B.; Aggarwal, A. The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: A national, population-based, modelling study. Lancet Oncol. 2020, 21, 1023–1034. [CrossRef]
Einstein, A.J.; Shaw, L.J.; Hirschfeld, C.; Williams, M.C.; Villines, T.C.; Better, N.; Vitola, J.V.; Cerci, R.; Dorbala, S.; Raggi, P.; et al. International Impact of COVID-19 on the Diagnosis of Heart Disease. J. Am. Coll. Cardiol. 2021, 77, 173–185. [CrossRef]
D’Ascenzi, F.; Cameli, M.; Forni, S.; Gemmi, F.; Szasz, C.; Di Fabrizio, V.; Mechi, M.T.; Nocci, M.; Mondillo, S.; Valente, S. Reduction of Emergency Calls and Hospitalizations for Cardiac Causes: Effects of Covid-19 Pandemic and Lockdown in Tuscany Region. Front. Cardiovasc. Med. 2021, 8, 625569. [CrossRef]
Rodríguez-Leor, O.; Cid-Álvarez, B.; Ojeda, S.; Martín-Moreiras, J.; Rumoroso, J.R.; López-Palop, R.; Serrador, A.; Cequier, Á.; Romaguera, R.; Cruz, I.; et al. Impact of the COVID-19 pandemic on interventional cardiology activity in Spain. REC Interv. Cardiol. English Ed. 2021, 2, 82–89. [CrossRef]
Fersia, O.; Bryant, S.; Nicholson, R.; McMeeken, K.; Brown, C.; Donaldson, B.; Jardine, A.; Grierson, V.; Whalen, V.; Mackay, A. The impact of the COVID-19 pandemic on cardiology services. Open Hear. 2020, 7, e001359. [CrossRef]
Kendzerska, T.; Zhu, D.T.; Gershon, A.S.; Edwards, J.D.; Peixoto, C.; Robillard, R.; Kendall, C.E. The Effects of the Health System Response to the COVID-19 Pandemic on Chronic Disease Management: A Narrative Review. Risk Manag. Health Policy 2021, 14, 575–584. [CrossRef]
Tisminetzky, M.; Delude, C.; Hebert, T.; Carr, C.; Goldberg, R.J.; Gurwitz, J.H. Age, Multiple Chronic Conditions, and COVID-19: A Literature Review. J. Gerontol. Ser. A 2020, 320. [CrossRef] [PubMed]
Adams, M.L.; Katz, D.L.; Grandpre, J. Population-Based Estimates of Chronic Conditions Affecting Risk for Complications from Coronavirus Disease, United States. Emerg. Infect. Dis. 2020, 26, 1831–1833. [CrossRef] [PubMed]
Wolf, M.S.; Serper, M.; Opsasnick, L.; O’Conor, R.M.; Curtis, L.M.; Benavente, J.Y.; Wismer, G.; Batio, S.; Eifler, M.; Zheng, P.; et al. Awareness, Attitudes, and Actions Related to COVID-19 Among Adults With Chronic Conditions at the Onset of the U.S. Outbreak. Ann. Intern. Med. 2020, 173, 100–109. [CrossRef]
Umucu, E.; Lee, B. Examining the impact of COVID-19 on stress and coping strategies in individuals with disabilities and chronic conditions. Rehabil. Psychol. 2020, 65, 193–198. [CrossRef] [PubMed]
Meo, S.A.; Meo, A.S.; Al-Jassir, F.F.; Klonoff, D.C. Omicron SARS-CoV-2 new variant: Global prevalence and biological and clinical characteristics. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 8012–8018. [CrossRef] [PubMed]
Torjesen, I. Covid-19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear. BMJ 2021, 375, n2943. [CrossRef]
Ferré, V.M.; Peiffer-Smadja, N.; Visseaux, B.; Descamps, D.; Ghosn, J.; Charpentier, C. Omicron SARS-CoV-2 variant: What we know and what we don’t. Anaesth. Crit. Care Pain Med. 2021, 41, 100998. [CrossRef]
Queen, D. Another year another variant: COVID 3.0—Omicron. Int. Wound J. 2021, 19, 5. [CrossRef]
Kwon, S.; Joshi, A.D.; Lo, C.-H.; Drew, D.A.; Nguyen, L.H.; Guo, C.-G.; Ma, W.; Mehta, R.S.; Shebl, F.M.; Warner, E.T.; et al. Association of social distancing and face mask use with risk of COVID-19. Nat. Commun. 2021, 12, 3737. [CrossRef]
Castex, G.; Dechter, E.; Lorca, M. COVID-19: The impact of social distancing policies, cross-country analysis. Econ. Disasters Clim. Chang. 2020, 5, 135–159. [CrossRef]
Yang, D.; Yurtsever, E.; Renganathan, V.; Redmill, K.; Ümit, Ö. A Vision-Based Social Distancing and Critical Density Detection System for COVID-19. Sensors 2021, 21, 4608. [CrossRef] [PubMed]
Vokó, Z.; Pitter, J.G. The effect of social distance measures on COVID-19 epidemics in Europe: An interrupted time series analysis. GeroScience 2020, 42, 1075–1082. [CrossRef] [PubMed]
Zhou, L.; Wu, Z.; Li, Z.; Zhang, Y.; McGoogan, J.M.; Li, Q.; Dong, X.; Ren, R.; Feng, L.; Qi, X.; et al. One Hundred Days of Coronavirus Disease 2019 Prevention and Control in China. Clin. Infect. Dis. 2021, 72, 332–339. [CrossRef] [PubMed]
Adhikari, S.P.; Meng, S.; Wu, Y.-J.; Mao, Y.-P.; Ye, R.-X.; Wang, Q.-Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty 2020, 9, 29. [CrossRef]
Xiao, Y.; Torok, M.E. Taking the right measures to control COVID-19. Lancet Infect. Dis. 2020, 20, 523–524. [CrossRef]
Güner, H.R.; Hasanoğlu, I.; Aktaş, F. COVID-19: Prevention and control measures in community. Turk. J. Med. Sci. 2020, 50, 571–577. [CrossRef]
Bagcchi, S. The world’s largest COVID-19 vaccination campaign. Lancet Infect. Dis. 2021, 21, 323. [CrossRef]
Marziano, V.; Guzzetta, G.; Mammone, A.; Riccardo, F.; Poletti, P.; Trentini, F.; Manica, M.; Siddu, A.; Bella, A.; Stefanelli, P.; et al. The effect of COVID-19 vaccination in Italy and perspectives for living with the virus. Nat. Commun. 2021, 12, 7272. [CrossRef]
Sherman, S.M.; Smith, L.E.; Sim, J.; Amlôt, R.; Cutts, M.; Dasch, H.; Rubin, G.J.; Sevdalis, N. COVID-19 vaccination intention in the UK: Results from the COVID-19 vaccination acceptability study (CoVAccS), a nationally representative cross-sectional survey. Hum. Vaccines Immunother. 2021, 17, 1612–1621. [CrossRef]
Khubchandani, J.; Sharma, S.; Price, J.H.; Wiblishauser, M.J.; Sharma, M.; Webb, F.J. COVID-19 Vaccination Hesitancy in the United States: A Rapid National Assessment. J. Community Health 2021, 46, 270–277. [CrossRef]
Javaid, M.; Haleem, A.; Vaishya, R.; Bahl, S.; Suman, R.; Vaish, A. Industry 4.0 technologies and their applications in fighting COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 419–422. [CrossRef] [PubMed]
Kumar, S.; Raut, R.D.; Narwane, V.S.; Narkhede, B.E. Applications of industry 4.0 to overcome the COVID-19 operational challenges. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1283–1289. [CrossRef] [PubMed]
Nollo, G.; Pilati, F.; Tronconi, R.; Rigoni, M. Industry 4.0 at the service of public health against the COVID-19 pandemic. Disaster Med. Public Health Prep. 2021, 9, 1–4. [CrossRef] [PubMed]
Abdel-Basset, M.; Chang, V.; Nabeeh, N.A. An intelligent framework using disruptive technologies for COVID-19 analysis. Technol. Forecast. Soc. Chang. 2021, 163, 120431. [CrossRef]
Palwe, S.; Sirsikar, S. Industry 4.0 Technologies and Their Applications in Fighting COVID-19. In Sustainability Measures for COVID-19 Pandemic; Springer: Berlin/Heidelberg, Germany, 2021; pp. 237–251.
Dong, Y.; Yao, Y.-D. IoT Platform for COVID-19 Prevention and Control: A Survey. IEEE Access 2021, 9, 49929–49941. [CrossRef]
Sharma, S.K.; Ahmed, S.S. IoT-based analysis for controlling & spreading prediction of COVID-19 in Saudi Arabia. Soft Comput. 2021, 25, 12551–12563. [CrossRef]
Ramallo-González, A.P.; González-Vidal, A.; Skarmeta, A.F. CIoTVID: Towards an Open IoT-Platform for Infective Pandemic Diseases such as COVID-19. Sensors 2021, 21, 484. [CrossRef]
Singh, R.P.; Javaid, M.; Haleem, A.; Suman, R. Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 521–524. [CrossRef]
Nasajpour, M.; Pouriyeh, S.; Parizi, R.M.; Dorodchi, M.; Valero, M.; Arabnia, H.R. Internet of Things for Current COVID-19 and Future Pandemics: An Exploratory Study. J. Health Inform. Res. 2020, 4, 325–364. [CrossRef]
Swayamsiddha, S.; Mohanty, C. Application of cognitive Internet of Medical Things for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 911–915. [CrossRef]
Aman, A.H.M.; Hassan, W.H.; Sameen, S.; Attarbashi, Z.S.; Alizadeh, M.; Latiff, L.A. IoMT amid COVID-19 pandemic: Applica-tion, architecture, technology, and security. J. Netw. Comput. Appl. 2021, 174, 102886. [CrossRef] [PubMed]
Lin, B.; Wu, S. COVID-19 (Coronavirus Disease 2019): Opportunities and Challenges for Digital Health and the Internet of Medical Things in China. OMICS A J. Integr. Biol. 2020, 24, 231–232. [CrossRef] [PubMed]
Singh, R.P.; Javaid, M.; Haleem, A.; Vaishya, R.; Ali, S. Internet of Medical Things (IoMT) for orthopaedic in COVID-19 pandemic: Roles, challenges, and applications. J. Clin. Orthop. Trauma 2020, 11, 713–717. [CrossRef] [PubMed]
Yang, T.; Gentile, M.; Shen, C.-F.; Cheng, C.-M. Combining Point-of-Care Diagnostics and Internet of Medical Things (IoMT) to Combat the COVID-19 Pandemic. Diagnostics 2020, 10, 224. [CrossRef] [PubMed]
Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 337–339. [CrossRef] [PubMed]
Bragazzi, N.L.; Dai, H.; Damiani, G.; Behzadifar, M.; Martini, M.; Wu, J. How Big Data and Artificial Intelligence Can Help Better Manage the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 3176. [CrossRef]
Singh, R.P.; Javaid, M.; Kataria, R.; Tyagi, M.; Haleem, A.; Suman, R. Significant applications of virtual reality for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 661–664. [CrossRef]
Siriwardhana, Y.; Gür, G.; Ylianttila, M.; Liyanage, M. The role of 5G for digital healthcare against COVID-19 pandemic: Opportunities and challenges. ICT Express 2021, 7, 244–252. [CrossRef]
Marbouh, D.; Abbasi, T.; Maasmi, F.; Omar, I.A.; Debe, M.S.; Salah, K.; Jayaraman, R.; Ellahham, S. Blockchain for COVID-19: Review, Opportunities, and a Trusted Tracking System. Arab. J. Sci. Eng. 2020, 45, 9895–9911. [CrossRef]
Wang, X.V.; Wang, L. A literature survey of the robotic technologies during the COVID-19 pandemic. J. Manuf. Syst. 2021, 60, 823–836. [CrossRef]
Sarker, S.; Jamal, L.; Ahmed, S.F.; Irtisam, N. Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review. Robot. Auton. Syst. 2021, 146, 103902. [CrossRef] [PubMed]
Tavakoli, M.; Carriere, J.; Torabi, A. Robotics, Smart Wearable Technologies, and Autonomous Intelligent Systems for Healthcare during the COVID-19 Pandemic: An Analysis of the State of the Art and Future Vision. Adv. Intell. Syst. 2020, 2, 2000071. [CrossRef]
Zeng, Z.; Chen, P.-J.; Lew, A.A. From high-touch to high-tech: COVID-19 drives robotics adoption. Tour. Geogr. 2020, 22, 724–734. [CrossRef]
Marchetti, A.; Di Dio, C.; Massaro, D.; Manzi, F. The Psychosocial Fuzziness of Fear in the Coronavirus (COVID-19) Era and the Role of Robots. Front. Psychol. 2020, 11, 2245. [CrossRef]
Javaid, M.; Haleem, A.; Rab, S.; Suman, R. Robotics Applications for Public Health and Safety during the COVID-19 Pandemic. In Robotics for Pandemics; CRC Press: Boca Raton, FL, USA, 2021; pp. 1–18.
Pfattheicher, S.; Nockur, L.; Böhm, R.; Sassenrath, C.; Petersen, M.B. The Emotional Path to Action: Empathy Promotes Physical Distancing and Wearing of Face Masks During the COVID-19 Pandemic. Psychol. Sci. 2020, 31, 1363–1373. [CrossRef]
Carbon, C.-C. About the Acceptance of Wearing Face Masks in Times of a Pandemic. i-Perception 2021, 12, 1–14. [CrossRef]
Nakayachi, K.; Ozaki, T.; Shibata, Y.; Yokoi, R. Why Do Japanese People Use Masks Against COVID-19, Even Though Masks Are Unlikely to Offer Protection from Infection? Front. Psychol. 2020, 11, 1918. [CrossRef]
Raigoso, D.; Céspedes, N.; Cifuentes, C.; Del-Ama, A.; Múnera, M. A Survey on Socially Assistive Robotics: Clinicians’ and Patients’ Perception of a Social Robot within Gait Rehabilitation Therapies. Brain Sci. 2021, 11, 738. [CrossRef]
Getson, C.; Nejat, G. Socially Assistive Robots Helping Older Adults through the Pandemic and Life after COVID-19. Robotics 2021, 10, 106. [CrossRef]
Vora, J.R.; Helmi, A.; Zhan, C.; Olivares, E.; Vu, T.; Wilkey, M.; Noregaard, S.; Fitter, N.T.; Logan, S.W. Influence of a Socially Assistive Robot on Physical Activity, Social Play Behavior, and Toy-Use Behaviors of Children in a Free Play Environment: A Within-Subjects Study. Front. Robot. AI 2021, 8, 768642. [CrossRef]
Van Assche, M.; Moreels, T.; Petrovic, M.; Cambier, D.; Calders, P.; Van de Velde, D. The role of a socially assistive robot in enabling older adults with mild cognitive impairment to cope with the measures of the COVID-19 lockdown: A qualitative study. Scand. J. Occup. Ther. 2021, 1–11. [CrossRef] [PubMed]
Scassellati, B.; Vázquez, M. The potential of socially assistive robots during infectious disease outbreaks. Sci. Robot. 2020, 5, 9014. [CrossRef] [PubMed]
Marchetti, A.; Dio, C.D.; Manzi, F.; Massaro, D. Robotics in Clinical and Developmental Psychology. In Reference Module in Neuroscience and Biobehavioral Psychology; Elsevier BV: Amsterdam, The Netherlands, 2020; pp. 1–20.
Ficocelli, M.; Terao, J.; Nejat, G. Promoting Interactions between Humans and Robots Using Robotic Emotional Behavior. IEEE Trans. Cybern. 2016, 46, 2911–2923. [CrossRef] [PubMed]
Saunderson, S.; Nejat, G. How Robots Influence Humans: A Survey of Nonverbal Communication in Social Human-Robot Interaction. Int. J. Soc. Robot. 2019, 11, 575–608. [CrossRef]
Shiomi, M.; Sumioka, H.; Ishiguro, H. Survey of Social Touch Interaction between Humans and Robots. J. Robot. Mechatron. 2020, 32, 128–135. [CrossRef]
Burgoon, J.K.; Guerrero, L.K.; Floyd, K. Nonverbal Communication, 1st ed.; Routledge: New York, NY, USA, 2010.
Knapp, M.L.; Daly, J.A. The Sage Handbook of Interpersonal Communication, 4th ed.; SAGE Publications: Thousand Oaks, CA, USA, 2011.
Gentile, J.P.; Gillig, P.M. Psychiatry of Intellectual Disability: A Practical Manual, 1st ed.; John Wiley & Sons: Chichester, UK, 2012.
Wilson, D.J.; Lin, Z.; Bower, D.Q.; Deravi, L.F. Engineering color, pattern, and texture: From nature to materials. Matter 2021, 4, 2163–2171. [CrossRef]
Calviño-Günther, S.; Vallod, Y. Patient Care: From Body to Mind. In Passport to Successful ICU Discharge; Springer Science and Business Media LLC: Berlin, Germany, 2020; pp. 29–42.
Engel, S.A.; Wilkins, A.J.; Mand, S.; Helwig, N.; Allen, P.M. Habitual wearers of colored lenses adapt more rapidly to the color changes the lenses produce. Vis. Res. 2016, 125, 41–48. [CrossRef]
Liu, X.; Engel, S.A. Higher-Level Meta-Adaptation Mitigates Visual Distortions Produced by Lower-Level Adaptation. Psychol. Sci. 2020, 31, 654–662. [CrossRef]
Litričin, O.; Blagojević, M.; Cvetković, D. Ophthalmology; Elit Medica: Belgrade, Serbia, 2004. (In Serbian)
Cvetković, D.; Golubović, S.; Hentova-Senćanić, P.; Ignjačev, M.; Jovanović, M.; Kontić, Ð.; Latković, Z.; Milenković, S.; Misita, V.; Risović, D.; et al. Ophthalmology for Medical Students; Faculty of Medicine: Belgrade, Serbia, 2010. (In Serbian)
Sadr, J.; Jarudi, I.; Sinha, P. The Role of Eyebrows in Face Recognition. Perception 2003, 32, 285–293. [CrossRef]
Sinha, P.; Balas, B.; Ostrovsky, Y.; Russell, R. Face Recognition by Humans: Nineteen Results All Computer Vision Researchers Should Know About. Proc. IEEE 2006, 94, 1948–1962. [CrossRef]
Rhee, S.C.; Woo, K.-S.; Kwon, B. Biometric Study of Eyelid Shape and Dimensions of Different Races with References to Beauty. Aesthetic Plast. Surg. 2012, 36, 1236–1245. [CrossRef] [PubMed]
Rhee, S.C. Differences between Caucasian and Asian attractive faces. Ski. Res. Technol. 2017, 24, 73–79. [CrossRef] [PubMed]
Bashour, M.; Geist, C. Is Medial Canthal Tilt a Powerful Cue for Facial Attractiveness? Ophthalmic Plast. Reconstr. Surg. 2007, 23, 52–56. [CrossRef] [PubMed]
Akşam, E.; Karatan, B. Periorbital Aesthetic Surgery: A Simple Algorithm for the Optimal Youthful Appearance. Plast. Reconstr. Surg.-Glob. Open 2019, 7, e2217. [CrossRef]
Codner, M.A.; Wolfli, J.N.; Anzarut, A. Primary Transcutaneous Lower Blepharoplasty with Routine Lateral Canthal Support: A Comprehensive 10-Year Review. Plast. Reconstr. Surg. 2008, 121, 241–250. [CrossRef]
Hoorntje, L.E.; van der Lei, B.; Stollenwerck, G.A.; Kon, M. Resecting orbicularis oculi muscle in upper eyelid blepharoplasty—A review of the literature. J. Plast. Reconstr. Aesthetic Surg. 2010, 63, 787–792. [CrossRef]
Bekerman, I.; Gottlieb, P.; Vaiman, M. Variations in Eyeball Diameters of the Healthy Adults. J. Ophthalmol. 2014, 2014, 503645. [CrossRef]
Murray, N.P.; Hunfalvay, M.; Bolte, T. The Reliability, Validity, and Normative Data of Interpupillary Distance and Pupil Diameter Using Eye-Tracking Technology. Transl. Vis. Sci. Technol. 2017, 6, 2. [CrossRef]
Lee, W.J.; Kim, J.H.; Shin, Y.U.; Hwang, S.; Lim, H.W. Differences in eye movement range based on age and gaze direction. Eye 2019, 33, 1145–1151. [CrossRef]
Lin, H.-Y.; Fang, Y.-T.; Chuang, Y.-J.; Karlin, J.N.; Chen, H.-Y.; Lin, S.-Y.; Lin, P.-J.; Chen, M. A comparison of three different corneal marking methods used to determine cyclotorsion in the horizontal meridian. Clin. Ophthalmol. 2017, 11, 311–315. [CrossRef]
Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.C.; LaMantia, A.-S.; McNamara, J.O.; Williams, M.S. Neuroscience, 3rd ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2004; pp. 457–458.
Sparks, D.L. The brainstem control of saccadic eye movements. Nat. Rev. Neurosci. 2002, 3, 952–964. [CrossRef] [PubMed]
Ángel, E.; Traba, A.; Prieto, J. Eyelid movements in health and disease. The supranuclear impairment of the palpebral motility. Neurophysiol. Clin. Neurophysiol. 2004, 34, 3–15. [CrossRef]
VanderWerf, F.; Brassinga, P.; Reits, D.; Aramideh, M.; De Visser, B.O. Eyelid Movements: Behavioral Studies of Blinking in Humans under Different Stimulus Conditions. J. Neurophysiol. 2003, 89, 2784–2796. [CrossRef] [PubMed]
Barbato, G.; Ficca, G.; Muscettola, G.; Fichele, M.; Beatrice, M.; Rinaldi, F. Diurnal variation in spontaneous eye-blink rate. Psychiatry Res. 2000, 93, 145–151. [CrossRef]
Sforza, C.; Rango, M.; Galante, D.; Bresolin, N.; Ferrario, V. Spontaneous blinking in healthy persons: An optoelectronic study of eyelid motion. Ophthalmic Physiol. Opt. 2008, 28, 345–353. [CrossRef]
Malbouisson, J.M.C.; Messias, A.; Garcia, D.M.; Cechetti, S.D.P.; Barbosa, J.C.; Cruz, A.A.V. Modeling upper eyelid kinematics during spontaneous and reflex blinks. J. Neurosci. Methods 2010, 191, 119–125. [CrossRef]
Chun, Y.S.; Park, H.H.; Moon, N.J.; Lee, J.K. Topographic analysis of eyelid position using digital image processing software. Acta Ophthalmol. 2017, 95, 1775. [CrossRef]
Yalçınkaya, E.; Cingi, C.; Söken, H.; Ulusoy, S.; Muluk, N.B. Aesthetic analysis of the ideal eyebrow shape and position. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 305–310. [CrossRef] [PubMed]
Guaïtella, I.; Santi, S.; Lagrue, B.; Cavé, C. Are Eyebrow Movements Linked to Voice Variations and Turn-taking in Dialogue? An Experimental Investigation. Lang. Speech 2009, 52, 207–222. [CrossRef] [PubMed]
Sclafani, A.P.; Jung, M. Desired Position, Shape, and Dynamic Range of the Normal Adult Eyebrow. Arch. Facial Plast. Surg. 2010, 12, 123–127. [CrossRef] [PubMed]
Feng, G.; Zhuang, Y.; Gao, Z. Measurement and analysis of associated mimic muscle movements. J. Otol. 2015, 10, 39–45. [CrossRef] [PubMed]
Alfayad, S.; El Asswad, M.; Abdellatif, A.; Ouezdou, F.B.; Blanchard, A.; Beaussé, N.; Gaussier, P. HYDROïD Humanoid Robot Head with Perception and Emotion Capabilities: Modeling, Design, and Experimental Results. Front. Robot. AI 2016, 3, 15. [CrossRef]
Kędzierski, J.; Muszyński, R.; Zoll, C.; Oleksy, A.; Frontkiewicz, M. EMYS—Emotive Head of a Social Robot. Int. J. Soc. Robot. 2013, 5, 237–249. [CrossRef]
Cid, F.; Moreno, J.; Bustos, P.; Núñez, P. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation. Sensors 2014, 14, 7711–7737. [CrossRef]
Kahn, P.H.; Kanda, T.; Ishiguro, H.; Freier, N.G.; Severson, R.L.; Gill, B.T.; Ruckert, J.H.; Shen, S. Robovie, you’ll have to go into the closet now’: Children’s social and moral relationships with a humanoid robot. Dev. Psychol. 2012, 48, 303–314. [CrossRef]
Sanjaya, W.M.; Anggraeni, D.; Juwardi, A.; Munawwaroh, M. Design of Real Time Facial Tracking and Expression Recognition for Human-Robot Interaction. J. Phys. Conf. Ser. 2018, 1090, 012044. [CrossRef]
Goris, K.; Saldien, J.; VanderBorght, B.; Lefeber, D. Mechanical Design of The Huggable Robot Probo. Int. J. Hum. Robot. 2011, 8, 481–511. [CrossRef]
Cheng, G.; Hyon, S.-H.; Morimoto, J.; Ude, A.; Hale, J.G.; Colvin, G.; Scroggin, W.; Jacobsen, S.C. CB: A humanoid research platform for exploring neuroscience. Adv. Robot. 2007, 21, 1097–1114. [CrossRef]
Shafie, A.A.; Alias, M.F.; Rashid, N.K. Graphical user interface for humanoid head Amir-II. In Proceedings of the International Conference on Computer and Communication Engineering (ICCCE 2010), Kuala Lumpur, Malaysia, 11–12 May 2010; IEEE Xplore: New York, NY, USA, 2010; pp. 1–3. [CrossRef]
Jamone, L.; Metta, G.; Nori, F.; Sandini, G. James: A humanoid robot acting over an unstructured world. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots (Humanoids 2006), Genova, Italy, 4–6 December 2006; IEEE Xplore: New York, NY, USA, 2007; pp. 143–150. [CrossRef]
Nori, F.; Jamone, L.; Sandini, G.; Metta, G. Accurate control of a human-like tendon-driven neck. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots (Humanoids 2007), Pittsburgh, PA, USA, 29 November–1 December 2007; IEEE Xplore: New York, NY, USA, 2009; pp. 371–378. [CrossRef]
Kozima, H. Infanoid; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2002; Volume 3, pp. 157–164.
Faber, F.; Bennewitz, M.; Eppner, C.; Gorog, A.; Gonsior, C.; Joho, D.; Schreiber, D.; Behnke, S. The humanoid museum tour guide Robotinho. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2009), Toyama, Japan, 27 September–2 October 2009; IEEE Xplore: New York, NY, USA, 2009; pp. 891–896. [CrossRef]
Sosnowski, S.; Bittermann, A.; Kuhnlenz, K.; Buss, M. Design and evaluation of emotion-display EDDIE. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006), Beijing, China, 9–15 October 2006; IEEE Xplore: New York, NY, USA, 2007; pp. 3113–3118. [CrossRef]
Aryananda, L.; Weber, J. MERTZ: A quest for a robust and scalable active vision humanoid head robot. In Proceedings of the IEEE/RAS International Conference on Humanoid Robots (Humanoids 2004), Santa Monica, CA, USA, 10–12 November 2004; IEEE Xplore: New York, NY, USA, 2005; pp. 513–532. [CrossRef]
Lee, J.K.; Breazeal, C. Human social response toward humanoid robot’s head and facial features. In Proceedings of the Extended Abstracts on Human Factors in Computing Systems (CHI EA 2010), Atlanta, GA, USA, 14–15 April 2010; ACM Press: New York, NY, USA, 2010; pp. 4237–4242. [CrossRef]
Breazeal, C.; Siegel, M.; Berlin, M.; Gray, J.; Grupen, R.; Deegan, P.; Weber, J.; Narendran, K.; McBean, J. Mobile, dexterous, social robots for mobile manipulation and human-robot interaction. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference (SIGGRAPH 2008); Los Angeles, CA, USA, 11–15 August 2008, ACM Press: New York, NY, USA, 2008; p. 1. [CrossRef]
Asfour, T.; Welke, K.; Azad, P.; Ude, A.; Dillmann, R. The Karlsruhe humanoid head. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots (Humanoids 2008), Daejeon, Korea, 1–3 December 2008; IEEE Xplore: New York, NY, USA, 2009; pp. 447–453. [CrossRef]
De Ruyter, B.B.; Saini, P.; Markopoulos, P.P.; Van Breemen, A.A. Assessing the effects of building social intelligence in a robotic interface for the home. Interact. Comput. 2005, 17, 522–541. [CrossRef]
Tscherepanow, M.; Hillebrand, M.; Hegel, F.; Wrede, B.; Kummert, F. Direct imitation of human facial expressions by a user-interface robot. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), Paris, France, 7–10 December 2009; IEEE Xplore: New York, NY, USA, 2010; pp. 154–160. [CrossRef]
Lütkebohle, I.; Hegel, F.; Schulz, S.; Hackel, M.; Wrede, B.; Wachsmuth, S.; Sagerer, G. The Bielefeld anthropomorphic robot head “Flobi”. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2010), Anchorage, AK, USA, 3–7 May 2010; IEEE Xplore: New York, NY, USA, 2010; pp. 3384–3391. [CrossRef]
Huang, H.-K.; Yu, H.-H.; Chen, Y.-J.; Lee, Y.-N. Development of an interactive robot with emotional expressions and face detection. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2008), Munich, Germany, 1–3 August 2008; IEEE Xplore: New York, NY, USA, 2008; pp. 201–206. [CrossRef]
Pateromichelakis, N.; Mazel, A.; Hache, M.A.; Koumpogiannis, T.; Gelin, R.; Maisonnier, B.; Berthoz, A. Head-eyes system and gaze analysis of the humanoid robot Romeo. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Chicago, IL, USA, 14–18 September 2014; IEEE Xplore: New York, NY, USA, 2014; pp. 1374–1379. [CrossRef]
Johansson, B.; A Tjøstheim, T.; Balkenius, C. Epi: An open humanoid platform for developmental robotics. Int. J. Adv. Robot. Syst. 2020, 17, 1–11. [CrossRef]
Zhang, X.; Mollahosseini, A.; Kargar, A.H.B.; Boucher, E.; Voyles, R.M.; Nielsen, R.; Mahoor, M.H. eBear: An expressive bear-like robot. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (ROMAN 2014), Edinburgh, UK, 25–29 August 2014; IEEE Xplore: New York, NY, USA, 2014; pp. 969–974. [CrossRef]
Parmiggiani, A.; Maggiali, M.; Natale, L.; Nori, F.; Schmitz, A.; Tsagarakis, N.; Santos-Victor, J.; Becchi, F.; Sandini, G.; Metta, G. The Design of the Icub Humanoid Robot. Int. J. Hum. Robot. 2012, 9, 1250027. [CrossRef]
Reilink, R.; Visser, L.C.; Brouwer, D.M.; Carloni, R.; Stramigioli, S. Mechatronic design of the Twente humanoid head. Intell. Serv. Robot. 2010, 4, 107–118. [CrossRef]
Lee, S.; Kim, J.-Y.; Kim, M. Development and Walking Control of Emotional Humanoid Robot, Kibo. Int. J. Hum. Robot. 2013, 10, 1350024. [CrossRef]
Itoh, K.; Miwa, H.; Zecca, M.; Takanobu, H.; Roccella, S.; Carrozza, M.C.; Dario, P.; Takanishi, A. Mechanical Design of Emotion Expression Humanoid Robot WE-4RII. In CISM Courses and Lectures; Springer Science and Business Media LLC: Berlin, Germany, 2008; Volume 487, pp. 255–262.
Kolpashchikov, D.; Gerget, O.; Meshcheryakov, R. Robotics in Healthcare. In Algebraic and Analytic Microlocal Analysis; Springer: Berlin/Heidelberg, Germany, 2021; Volume 212, pp. 281–306.
Kim, J.; Gu, G.M.; Heo, P. Robotics for Healthcare; Springer Science and Business Media LLC: Berlin, Germany, 2016; Volume 9, pp. 489–509.
Alabdulkareem, A.; Alhakbani, N.; Al-Nafjan, A. A Systematic Review of Research on Robot-Assisted Therapy for Children with Autism. Sensors 2022, 22, 944. [CrossRef]
Huijnen, C.A.G.J.; Verreussel-Willen, H.A.M.D.; Lexis, M.A.S.; de Witte, L. Robot KASPAR as Mediator in Making Contact with Children with Autism: A Pilot Study. Int. J. Soc. Robot. 2021, 13, 237–249. [CrossRef]
Simut, R.E.; Vanderfaeillie, J.; Peca, A.; Van De Perre, G.; Vanderborght, B. Children with Autism Spectrum Disorders Make a Fruit Salad with Probo, the Social Robot: An Interaction Study. J. Autism. Dev. Disord. 2016, 46, 113–126. [CrossRef]
Blankenship, M.M.; Bodine, C. Socially Assistive Robots for Children with Cerebral Palsy: A Meta-Analysis. IEEE Trans. Med Robot. Bionics 2021, 3, 21–30. [CrossRef]
Buitrago, J.A.; Bolaños, A.M.; Bravo, E.C. A motor learning therapeutic intervention for a child with cerebral palsy through a social assistive robot. Disabil. Rehabil. Assist. Technol. 2020, 15, 357–362. [CrossRef] [PubMed]
Malik, N.A.; Hanapiah, F.A.; Rahman, R.A.A.; Yussof, H. Emergence of Socially Assistive Robotics in Rehabilitation for Children with Cerebral Palsy: A Review. Int. J. Adv. Robot. Syst. 2016, 13, 135. [CrossRef]
Hung, L.; Gregorio, M.; Mann, J.; Wallsworth, C.; Horne, N.; Berndt, A.; Liu, C.; Woldum, E.; Au-Yeung, A.; Chaudhury, H. Exploring the perceptions of people with dementia about the social robot PARO in a hospital setting. Dementia 2021, 20, 485–504. [CrossRef]
Lu, L.-C.; Lan, S.-H.; Hsieh, Y.-P.; Lin, L.-Y.; Lan, S.-J.; Chen, J.-C. Effectiveness of Companion Robot Care for Dementia: A Systematic Review and Meta-Analysis. Innov. Aging 2021, 5, igab013. [CrossRef]
Mannion, A.; Summerville, S.; Barrett, E.; Burke, M.; Santorelli, A.; Kruschke, C.; Felzmann, H.; Kovacic, T.; Murphy, K.; Casey, D.; et al. Introducing the Social Robot MARIO to People Living with Dementia in Long Term Residential Care: Reflections. Int. J. Soc. Robot. 2020, 12, 535–547. [CrossRef]
Louie, W.-Y.G.; McColl, D.; Nejat, G. Acceptance and Attitudes toward a Human-like Socially Assistive Robot by Older Adults. Assist. Technol. 2014, 26, 140–150. [CrossRef]
Abdi, J.; Al-Hindawi, A.; Ng, T.; Vizcaychipi, M. Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open 2018, 8, e018815. [CrossRef]
Martinez-Martin, E.; del Pobil, A.P. Personal Robot Assistants for Elderly Care: An Overview. In Contemporary Developments in Statistical Theory; Springer Science and Business Media LLC: Berlin, Germany, 2017; Volume 132, pp. 77–91.
Kim, Y.-I.; Lee, H.-W.; Kim, T.-H.; Kim, J.-H.; Ok, K.-I. The effect of care-robots on improving anxiety/depression and drug compliance among the elderly in the community. J. Korean Soc. Biol. Ther. Psychiatry 2020, 26, 218–226.
Tasevski, J.; Gnjatović, M.; Borovac, B. Assessing the Children’s Receptivity to the Robot MARKO. Acta Polytech. Hung. 2018, 15, 47–66. [CrossRef]
Anttila, H.; Autti-Rämö, I.; Suoranta, J.; Mäkelä, M.; Malmivaara, A. Effectiveness of physical therapy interventions for children with cerebral palsy: A systematic review. BMC Pediatr. 2008, 8, 14. [CrossRef] [PubMed]
Imms, C. Children with cerebral palsy participate: A review of the literature. Disabil. Rehabil. 2008, 30, 1867–1884. [CrossRef] [PubMed]
Ketelaar, M.; Vermeer, A.; Hart, H.; van Petegem-van Beek, E.; Helders, P.J. Effects of a Functional Therapy Program on Motor Abilities of Children With Cerebral Palsy. Phys. Ther. 2001, 81, 1534–1545. [CrossRef] [PubMed]
Sutherland, G.H.; Roth, B. A Transmission Index for Spatial Mechanisms. J. Eng. Ind. 1973, 95, 589–597. [CrossRef]
Chen, C.; Angeles, J. Generalized transmission index and transmission quality for spatial linkages. Mech. Mach. Theory 2007, 42, 1225–1237. [CrossRef]
Balli, S.S.; Chand, S. Transmission angle in mechanisms (Triangle in mech). Mech. Mach. Theory 2002, 37, 175–195. [CrossRef]
Fitzpatrick, R. Designing and Constructing an Animatronic Head Capable of Human Motion Programmed Using Face-Tracking Software. Master’s Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 1 May 2010.
Chen, Z.; Liu, X.; Kojima, M.; Huang, Q.; Arai, T. A Wearable Navigation Device for Visually Impaired People Based on the Real-Time Semantic Visual SLAM System. Sensors 2021, 21, 1536. [CrossRef]
Bartneck, C.; Reichenbach, J.; Breemen, A. In Your Face, Robot! The Influence of a Character’s Embodiment on How Users Perceive Its Emotional Expressions. In Proceedings of the Design and Emotion Conference, Ankara, Turkey, 12–14 July 2004; pp. 32–51.
Bennett, C.C.; Šabanović, S. Deriving Minimal Features for Human-Like Facial Expressions in Robotic Faces. Int. J. Soc. Robot. 2014, 6, 367–381. [CrossRef]
Ekman, P.; Friesen, W.V. Unmasking the Face. A Guide to Recognizing Emotions from Facial Clues, 1st ed.; Malor Books: Cambridge, MA, USA, 2003.
Ekman, P.; Friesen, W.V.; Hager, J.C. Facial Action Coding System. Manual and Investigator’s Guide; Research Nexus: Salt Lake City, UT, USA, 2002.
Schiano, D.J.; Ehrlich, S.M.; Rahardja, K.; Sheridan, K. Face to interface: Facial affect in (hu)man and machine. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2000), Hague, The Netherlands, 1–6 April 2000; Association for Computing Machinery: New York, NY, USA, 2000; pp. 193–200. [CrossRef]
Ekman, P.; Friesen, W.V. Unmasking the Face, 1st ed.; Prentice-Hall, Inc.: Englewood Cliffs, NY, USA, 1975.
Canamero, L.; Fredslund, J. I show you how I like you-can you read it in my face? Robotics. IEEE Trans. Syst. Man, Cybern.-Part A Syst. Hum. 2001, 31, 454–459. [CrossRef]
Shayganfar, M.; Rich, C.; Sidner, C.L. A design methodology for expressing emotion on robot faces. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), Vilamoura-Algarve, Portugal, 24 December 2012; IEEE Xplore: New York, NY, USA, 2012; pp. 4577–4583. [CrossRef]
Borovac, B.; Raković, M.; Nikolić, M.; Delić, V.; Savić, S.; Penčić, M.; Mišković, D. Robotics as Assistive Technology for Treatment of Children with Developmental Disorders—Example of Robot MARKO. In New Advances in Mechanisms, Transmissions and Applications; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2022; Volume 109, pp. 69–76.
Breazeal, C. Emotion and sociable humanoid robots. Int. J. Hum.-Comput. Stud. 2003, 59, 119–155. [CrossRef]
Bennett, C.C.; Šabanović, S. The effects of culture and context on perceptions of robotic facial expressions. Interact. Stud. 2015, 16, 272–302. [CrossRef]
Bazo, D.; Vaidyanathan, R.; Lentz, A.; Melhuish, C. Design and testing of a hybrid expressive face for a humanoid robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), Taipei, Taiwan, 18–22 October 2010; IEEE Xplore: New York, NY, USA, 2010; pp. 5317–5322. [CrossRef]
Li, J. The benefit of being physically present: A survey of experimental works comparing copresent robots, telepresent robots and virtual agents. Int. J. Hum.-Comput. Stud. 2015, 77, 23–37. [CrossRef]
Hortensius, R.; Hekele, F.; Cross, E.S. The Perception of Emotion in Artificial Agents. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 852–864. [CrossRef]
Abbruzzese, L.; Magnani, N.; Robertson, I.H.; Mancuso, M. Age and Gender Differences in Emotion Recognition. Front. Psychol. 2019, 10, 2371. [CrossRef] [PubMed]
Hoffmann, H.; Kessler, H.; Eppel, T.; Rukavina, S.; Traue, H.C. Expression intensity, gender and facial emotion recognition: Women recognize only subtle facial emotions better than men. Acta Psychol. 2010, 135, 278–283. [CrossRef] [PubMed]
Carbon, C.-C. Wearing Face Masks Strongly Confuses Counterparts in Reading Emotions. Front. Psychol. 2020, 11, 566886. [CrossRef] [PubMed]
Marini, M.; Ansani, A.; Paglieri, F.; Caruana, F.; Viola, M. The impact of facemasks on emotion recognition, trust attribution and re-identification. Sci. Rep. 2021, 11, 5577. [CrossRef]
Kastendieck, T.; Zillmer, S.; Hess, U. (Un)mask yourself! Effects of face masks on facial mimicry and emotion perception during the COVID-19 pandemic. Cogn. Emot. 2021, 36, 59–69. [CrossRef]
Carbon, C.-C.; Serrano, M. The Impact of Face Masks on the Emotional Reading Abilities of Children—A Lesson From a Joint School–University Project. i-Perception 2021, 12, 1–17. [CrossRef]
Ramachandra, V.; Longacre, H. Unmasking the psychology of recognizing emotions of people wearing masks: The role of empathizing, systemizing, and autistic traits. Pers. Individ. Differ. 2021, 185, 111249. [CrossRef]
Tsantani, M.; Podgajecka, V.; Gray, K.L.H.; Cook, R. How does the presence of a surgical face mask impair the perceived intensity of facial emotions? PLoS ONE 2022, 17, e0262344. [CrossRef] [PubMed]
De Sonneville, L.; Verschoor, C.; Njiokiktjien, C.; Veld, V.O.H.; Toorenaar, N.; Vranken, M. Facial Identity and Facial Emotions: Speed, Accuracy, and Processing Strategies in Children and Adults. J. Clin. Exp. Neuropsychol. 2002, 24, 200–213. [CrossRef] [PubMed]
Mill, A.; Allik, J.; Realo, A.; Valk, R. Age-related differences in emotion recognition ability: A cross-sectional study. Emotion 2009, 9, 619–630. [CrossRef] [PubMed]
Sullivan, S.; Ruffman, T.; Hutton, S.B. Age Differences in Emotion Recognition Skills and the Visual Scanning of Emotion Faces. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2007, 62, P53–P60. [CrossRef]
Brotman, M.A.; Guyer, A.E.; Lawson, E.S.; Horsey, S.E.; Rich, B.A.; Dickstein, D.P.; Pine, D.S.; Leibenluft, E. Facial Emotion Labeling Deficits in Children and Adolescents at Risk for Bipolar Disorder. Am. J. Psychiatry 2008, 165, 385–389. [CrossRef]
Wolff, S.; Stiglmayr, C.; Bretz, H.J.; Lammers, C.-H.; Auckenthaler, A. Emotion identification and tension in female patients with borderline personality disorder. Br. J. Clin. Psychol. 2007, 46, 347–360. [CrossRef]
Ulusoy, S.I.; Gülseren, Ş.A.; Özkan, N.; Bilen, C. Facial emotion recognition deficits in patients with bipolar disorder and their healthy parents. Gen. Hosp. Psychiatry 2020, 65, 9–14. [CrossRef]