Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
BLU-SynTra: Distinguish Synergies and Trade-offs between Sustainable Development Goals Using Small Language Models
Bergeron, Loris; FRANCOIS, Jérôme; STATE, Radu et al.
2024In Proceedings of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing
Peer reviewed
 

Documents


Texte intégral
FinNLP_KDF_2024_Conference (3).pdf
Postprint Auteur (433.46 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
United Nations (UN); Sustainable Development Goals (SDGs); Small Language Models (SLMs); Retrieval Augmented Generation (RAG); Mistral; Orca 2; Phi-2; Generative Query Reformulation (GenQR); Context Aware Query Rewriting (CAR); Reciprocal Rank Fusion (RRF); Zero-Shot Classification
Résumé :
[en] Since the United Nations defined the Sustainable Development Goals, studies have shown that these goals are interlinked in different ways. The concept of SDG interlinkages refers to the complex network of interactions existing within and between the SDGs themselves. These interactions are referred to as synergies and trade-offs. Synergies represent positive interactions where the progress of one SDG contributes positively to the progress of another. On the other hand, trade-offs are negative interactions where the progress of one SDG has a negative impact on another. However, evaluating such interlinkages is a complex task, not only because of the multidimensional nature of SDGs, but also because it is highly exposed to personal interpretation bias and technical limitations. Recent studies are mainly based on expert judgements, literature reviews, sentiment or data analysis. To remedy these limitations we propose the use of Small Language Models in addition of an advanced Retrieval Augmented Generation to distinguish synergies and trade-offs between SDGs. In order to validate our results, we have drawn on the study carried out by the European Commission’s Joint Research Centre which provides a database of interlinkages labelled according to the presence of synergies or trade-offs.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Bergeron, Loris;  Banque de Luxembourg, Luxembourg ; SnT SEDAN, University of Luxembourg
FRANCOIS, Jérôme  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
HILGER, Jean ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SnT Finnovation Hub
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
BLU-SynTra: Distinguish Synergies and Trade-offs between Sustainable Development Goals Using Small Language Models
Date de publication/diffusion :
2024
Nom de la manifestation :
Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing
Lieu de la manifestation :
Torino, Italie
Date de la manifestation :
May 2024
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing
Maison d'édition :
Association for Computational Linguistics (ACL)
Peer reviewed :
Peer reviewed
Focus Area :
Sustainable Development
Disponible sur ORBilu :
depuis le 19 décembre 2024

Statistiques


Nombre de vues
176 (dont 5 Unilu)
Nombre de téléchargements
35 (dont 1 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1

Bibliographie


Publications similaires



Contacter ORBilu