Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Vulnet: Learning Navigation in an Attack Graph
D'andrea, Enzo; FRANCOIS, Jérôme; LAHMADI, Abdelkader et al.
2024In 2024 IEEE 10th International Conference on Network Softwarization, NetSoft 2024
Peer reviewed
 

Documents


Texte intégral
secsoft24.pdf
Postprint Auteur (583.22 kB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Analysis techniques; Attack graph; Infrastructure deployments; Machine-learning; Mean errors; Performance; Reinforcement learnings; Computer Networks and Communications; Software; Safety, Risk, Reliability and Quality
Résumé :
[en] Nowadays, new flaws or vulnerabilities are frequently discovered. Analyzing how these vulnerabilities can be used by attackers to gain access to different parts of a network allows to provide better protection and defense. Amongst the diverse analysis techniques, simulations do not necessitate a full infrastructure deployment and recently benefited from advances in reinforcement learning to better mimic an attacker's behavior. However, such simulations are resource consuming. By representing the interconnected hosts of a network and their vulnerabilities as attack graphs and leveraging machine learning, our method, Vulnet, is capable to generalize knowledge generated by simulation and gives insight about attacker capabilities. It can predict instantaneously the overall performance of an attacker to compromise a system with a mean error of 0.07.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
D'andrea, Enzo;  Inria - LORIA, Nancy, France
FRANCOIS, Jérôme  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN ; Inria Nancy Grand Est, France
LAHMADI, Abdelkader ;  Université de Lorraine - LORIA, Nancy, France
Festor, Olivier;  Université de Lorraine - LORIA, Nancy, France
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Vulnet: Learning Navigation in an Attack Graph
Date de publication/diffusion :
2024
Nom de la manifestation :
2024 IEEE 10th International Conference on Network Softwarization (NetSoft) - SecSoft 2024 - 6th International Workshop on Cyber-Security in Software-defined and Virtualized Infrastructures
Lieu de la manifestation :
Saint Louis, Usa
Date de la manifestation :
24-06-2024 => 28-06-2024
Manifestation à portée :
International
Titre de l'ouvrage principal :
2024 IEEE 10th International Conference on Network Softwarization, NetSoft 2024
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
ISBN/EAN :
9798350369588
Peer reviewed :
Peer reviewed
Projet FnR :
INTER/ANR/20/14783140/GLADIS
Intitulé du projet de recherche :
Graph-based Learning And Analysis For Intrusion Detection In Information Systems
Subventionnement (détails) :
This work has been partially supported by the French National Research Agency under the France 2030 label (Superviz ANR-22-PECY-0008). The views reflected herein do not necessarily reflect the opinion of the French government. This research was funded in part, by the Luxembourg National Research Fund (FNR), grant reference INTER/ANR/20/14783140/GLADIS.
Disponible sur ORBilu :
depuis le 19 décembre 2024

Statistiques


Nombre de vues
62 (dont 1 Unilu)
Nombre de téléchargements
44 (dont 1 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu