Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
ULA, a Bibliometric Method to Identify Sustainable Development Goals using Large Language Models
Bergeron, Loris; FRANCOIS, Jérôme; STATE, Radu et al.
2023In 2023 IEEE International Humanitarian Technology Conference, IHTC 2023
Peer reviewed
 

Documents


Texte intégral
IEEE_IHTC_2023_Conference (3).pdf
Postprint Auteur (246.89 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Bibliometrics; GPT3.5; Large Language Models (LLMs); Llama 2; PaLM 2; Sustainable Developement Goals (SDGs); United Nations (UN); Accurate measurement; Bibliometric; Gpt3.5; Language model; Large language model; Sustainable developement goal; United nation; United Nations; Computer Science Applications; Artificial Intelligence; Computer Networks and Communications; Hardware and Architecture; Information Systems and Management; Education; Health (social science)
Résumé :
[en] United Nations defined a set of 17 Sustainable Development Goals (SDGs) that must be derived by all states into concrete actions. As a result, methods need to be defined to evaluate the progress towards achieving those goals. However, evaluating each individual action with accurate measurements is not possible. As a result, many methods rely on analyzing textual documentation such as reports or publications to identify and comprehend the contributions of an entity to the different SDGs. Existing solutions are based on queries composed of a mostly manually fixed set of keywords. The exhaustiveness of these queries is strongly linked to the datasets used to build them but also to the personal interpretations of the SDGs. To remedy this situation, we propose to extend a set of initial and manually validated keywords thanks to three major Large Language Models in order to generate and aggregate synonyms. For validation purposes, we rely on the OSDG Community Dataset which contains labelled text extracts alongside with the associated SDGs.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Bergeron, Loris;  Banque de Luxembourg, Luxembourg ; SnT - SEDAN, Luxembourg, Luxembourg
FRANCOIS, Jérôme  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
HILGER, Jean ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SnT Finnovation Hub
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
ULA, a Bibliometric Method to Identify Sustainable Development Goals using Large Language Models
Date de publication/diffusion :
2023
Nom de la manifestation :
2023 IEEE International Humanitarian Technology Conference (IHTC)
Lieu de la manifestation :
Santa Marta, Col
Date de la manifestation :
01-11-2023 => 03-11-2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
2023 IEEE International Humanitarian Technology Conference, IHTC 2023
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
ISBN/EAN :
9798350314311
Peer reviewed :
Peer reviewed
Organisme subsidiant :
IEEE Communications Society
IEEE Engineering Projects in Community Service (EPICS)
IEEE Power and Energy Society
Disponible sur ORBilu :
depuis le 19 décembre 2024

Statistiques


Nombre de vues
110 (dont 1 Unilu)
Nombre de téléchargements
71 (dont 1 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
OpenCitations
 
0
citations OpenAlex
 
2

Bibliographie


Publications similaires



Contacter ORBilu