brain connectivity; fmri; insular cortex; problem gambling; reward availability; sports betting; Humans; Insular Cortex; Brain; Motivation; Gambling; Sports; Medicine (miscellaneous); Pharmacology; Psychiatry and Mental Health
Résumé :
[en] With the advent of digital technologies, online sports betting is spurring a fast-growing expansion. In this study, we examined how sports betting availability modulates the brain connectivity of frequent sports bettors with [problem bettors (PB)] or without [non-problem bettors (NPB)] problematic sports betting. We conducted functional connectivity analyses centred on the ventral anterior insular cortex (vAI), a brain region playing a key role in the dynamic interplay between reward-based processes. We re-analysed a dataset on sports betting availability undertaken in PB (n = 30) and NPB (n = 35). Across all participants, we observed that sports betting availability elicited positive vAI coupling with extended clusters of brain activation (encompassing the putamen, cerebellum, occipital, temporal, precentral and central operculum regions) and negative vAI coupling with the orbitofrontal cortex. Between-group analyses showed increased positive vAI coupling in the PB group, as compared with the NPB group, in the left lateral occipital cortex, extending to the left inferior frontal gyrus, the anterior cingulate gyrus and the right frontal pole. Taken together, these results are in line with the central assumptions of triadic models of addictions, which posit that the insular cortex plays a pivotal role in promoting the drive and motivation to get a reward by 'hijacking' goal-oriented processes toward addiction-related cues. Taken together, these findings showed that vAI functional connectivity is sensitive not only to gambling availability but also to the status of problematic sport betting.
Disciplines :
Neurosciences & comportement
Auteur, co-auteur :
BREVERS, Damien ✱; University of Luxembourg > Faculty of Humanities, Education and Social Sciences > Department of Behavioural and Cognitive Sciences > Team Claus VÖGELE ; Louvain for Experimental Psychopathology Research Group (LEP), Psychological Sciences Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
Baeken, Chris ; Department of Psychiatry, UZ Brussel, Brussels, Belgium ; Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University Hospital, Ghent University, Ghent, Belgium ; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
Bechara, Antoine ; Department of Psychology, University of Southern California, California, Los Angeles, USA
He, Qinghua ; Faculty of Psychology, Southwest University, Chongqing, China
Maurage, Pierre ; Louvain for Experimental Psychopathology Research Group (LEP), Psychological Sciences Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
Sescousse, Guillaume ; Lyon Neuroscience Research Center-INSERM U1028-CNRS UMR5292, PSYR2 Team, University of Lyon, Lyon, France
Billieux, Joël ✱; Institute of Psychology, University of Lausanne, Lausanne, Switzerland ; Centre for Excessive Gambling, Addiction Medicine, Lausanne University Hospitals (CHUV), Lausanne, Switzerland
✱ Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Increased ventral anterior insular connectivity to sports betting availability indexes problem gambling.
Brevers D, Vögele C, Billieux J. The evolving landscape of sports betting: a risk for young people? In: Heinen A, ed. Well-being and Health Among Young People. Springer International Publishing; 2022.
Etuk R, Xu T, Abarbanel B, Potenza MN, Kraus SW. Sports betting around the world: a systematic review. J Behav Addict. 2022;11(3):689-715. doi:10.1556/2006.2022.00064
Newall PWS, Russell AMT, Hing N. Structural characteristics of fixed-odds sports betting products. J Behav Addict. 2021;10(3):371-380. doi:10.1556/2006.2021.00008
Flayelle M, Brevers D, King DL, Maurage P, Perales CJ. A taxonomy of technology design features that promote potentially addictive online behaviours. Nat Rev Psychol. 2023;2(3):136-150. doi:10.1038/s44159-023-00153-4
Hing N, Li E, Vitartas P, Russell AMT. On the spur of the moment: intrinsic predictors of impulse sports betting. J Gambl Stud. 2018;34(2):413-428. doi:10.1007/s10899-017-9719-x
Brevers D, Baeken C, Bechara A, He Q, Maurage P, Petieau M. Increased brain reactivity to gambling unavailability as a marker of problem gambling. Addict Biol. 2021;26(4):e12996. doi:10.1111/adb.12996
Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage. 1997;6(3):218-229. doi:10.1006/nimg.1997.0291
Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13-36. doi:10.1089/brain.2011.0008
O'Reilly JX, Woolrich MW, Behrens TE, Smith SM, Johansen-Berg H. Tools of the trade: psychophysiological interactions and functional connectivity. Soc Cogn Affect Neurosci. 2012;7(5):604-609. doi:10.1093/scan/nss055
Droutman V, Bechara A, Read SJ. Roles of the different sub-regions of the insular cortex in various phases of the decision-making process. Front Behav Neurosci. 2015;9:309. doi:10.3389/fnbeh.2015.00309
Droutman V, Read SJ, Bechara A. Revisiting the role of the insula in addiction. Trends Cogn Sci. 2015;19(7):414-420. doi:10.1016/j.tics.2015.05.005
Molnar-Szakacs I, Uddin LQ. Anterior insula as a gatekeeper of executive control. Neurosci Biobehav Rev. 2022;139:104736. doi:10.1016/j.neubiorev.2022.104736
Zhao H, Turel O, Bechara A, He Q. How distinct functional insular subdivisions mediate interacting neurocognitive systems. Cereb Cortex. 2019;29(8):3090-3103. doi:10.1093/cercor/bhz012
Chang LJ, Yarkoni T, Khaw MW, Sanfey AG. Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cereb Cortex. 2013;23(3):739-749. doi:10.1093/cercor/bhs065
Craig A. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655-666. doi:10.1038/nrn894
Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1):59-70. doi:10.1038/nrn2555
Ghahremani DG, Pochon JF, Diaz MP, Tyndale RF, Dean AC, London ED. Nicotine dependence and insula subregions: functional connectivity and cue-induced activation. Neuropsychopharmacology. 2023;48(6):936-945. doi:10.1038/s41386-023-01528-0
Hofmann W, Friese M, Strack F. Impulse and self-control from a dual-systems perspective. Perspect Psychol Sci. 2009;4(2):162-176. doi:10.1111/j.1745-6924.2009.01116.x
Hofmann W, Gschwendner T, Friese M, Wiers RW, Schmitt M. Working memory capacity and self-regulatory behavior: toward an individual differences perspective on behavior determination by automatic versus controlled processes. J Pers Soc Psychol. 2008;95(4):962-977. doi:10.1037/a0012705
Lindgren KP, Hendershot CS, Ramirez JJ, Bernat E, Rangel-Gomez M, Peterson KP. A dual process perspective on advances in cognitive science and alcohol use disorder. Clin Psychol Rev. 2019;69:83-96. doi:10.1016/j.cpr.2018.04.002
Wiers RW, Bartholow BD, van den Wildenberg E, et al. Automatic and controlled processes and the development of addictive behaviors in adolescents: a review and a model. Pharmacol Biochem Behav. 2007;86(2):263-283. doi:10.1016/j.pbb.2006.09.021
Wiers RW, Gladwin TE, Rinck M. Should we train alcohol-dependent patients to avoid alcohol? Front Psych. 2013;4:33.
Brevers D, Sescousse G, Maurage P, Billieux J. Examining neural reactivity to gambling cues in the age of online betting. Curr Behav Neurosci Rep. 2019;6(3):59-71. doi:10.1007/s40473-019-00177-2
Brevers D, Baeken C, De Smet C, Catoira B, De Witte S, He Q. Stimulation of the dorsolateral prefrontal cortex modulates brain cue reactivity to reward (un)availability. Cortex. 2023;164:51-62. doi:10.1016/j.cortex.2023.03.008
Hommel B, Wiers RW. Towards a unitary approach to human action control. Trends Cogn Sci. 2017;21(12):940-949. doi:10.1016/j.tics.2017.09.009
Melnikoff DE, Bargh JA. The mythical number two. Trends Cogn Sci. 2018;22(4):280-293. doi:10.1016/j.tics.2018.02.001
Monterosso J, Luo S. Willpower is not synonymous with ‘executive function’. Behav Brain Sci. 2013;36(6):700-701; discussion 707–726. doi:10.1017/S0140525X1300112X
Billaux P, Maurage P, Cabé N, Laniepce A, Segobin S, Pitel AL. Insular volumetry in severe alcohol use disorder and Korsakoff's syndrome through an anatomical parcellation: let us go back to basics. Addict Biol. 2023;28(10):e13324. doi:10.1111/adb.13324
Nummenmaa L, Hirvonen J, Hannukainen JC, et al. Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS ONE. 2012;7(2):e31089. doi:10.1371/journal.pone.0031089
He Q, Huang X, Zhang S, Turel O, Ma L, Bechara A. Dynamic causal modeling of insular, striatal, and prefrontal cortex activities during a food-specific Go/NoGo task. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(12):1080-1089. doi:10.1016/j.bpsc.2018.12.005
Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8(11):1458-1463. doi:10.1038/nn1584
Naqvi NH, Bechara A. The hidden island of addiction: the insula. Trends Neurosci. 2009;32(1):56-67. doi:10.1016/j.tins.2008.09.009
Naqvi NH, Bechara A. The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Struct Funct. 2010;214(5–6):435-450. doi:10.1007/s00429-010-0268-7
Naqvi NH, Gaznick N, Tranel D, Bechara A. The insula: a critical neural substrate for craving and drug seeking under conflict and risk. Ann N Y Acad Sci. 2014;1316(1):53-70. doi:10.1111/nyas.12415
Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science. 2007;315(5811):531-534. doi:10.1126/science.1135926
Noël X, Brevers D, Bechara A. A neurocognitive approach to understanding the neurobiology of addiction. Curr Opin Neurobiol. 2013;23(4):632-638. doi:10.1016/j.conb.2013.01.018
Noël X, Brevers D, Bechara A. A triadic neurocognitive approach to addiction for clinical interventions. Front Psych. 2013;4:179. doi:10.3389/fpsyt.2013.00179
Sutherland MT, Carroll AJ, Salmeron BJ, Ross TJ, Hong LE, Stein EA. Down-regulation of amygdala and insula functional circuits by varenicline and nicotine in abstinent cigarette smokers. Biol Psychiatry. 2013;74(7):538-546. doi:10.1016/j.biopsych.2013.01.035
Verdejo-García A, Bechara A. A somatic marker theory of addiction. Neuropharmacology. 2009;56(Suppl 1):148-162.
Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8(11):1481-1489. doi:10.1038/nn1579
Miller M, Kiverstein J, Rietveld E. Embodying addiction: a predictive processing account. Brain Cogn. 2020;138:105495. doi:10.1016/j.bandc.2019.105495
Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):247-291. doi:10.1016/0165-0173(93)90013-P
García-Castro J, Cancela A, Cárdaba MAM. Neural cue-reactivity in pathological gambling as evidence for behavioral addiction: a systematic review. Curr Psychol. 2022;43(32):28026-28037. doi:10.1007/s12144-022-03915-0
Limbrick-Oldfield EH, Mick I, Cocks RE, McGonigle J, Sharman SP, Goldstone AP. Neural substrates of cue reactivity and craving in gambling disorder. Transl Psychiatry. 2017;7(1):e992. doi:10.1038/tp.2016.256
Ferris J, Wynne H. The Canadian Problem Gambling Index: Final Report. Canadian Centre on Substance Abuse; 2011.
Walker M, Blaszczynski A. Clinical assessment of problem gamblers identified using the Canadian Problem Gambling Index. Independent Gambling Authority. 2011: Adelaide.
Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113(28):7900-7905. doi:10.1073/pnas.1602413113
Groenewegen HJ, Uylings HB. The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res. 2000;126:3-28. doi:10.1016/S0079-6123(00)26003-2
Brevers D, Herremans SC, He Q, Vanderhasselt MA, Petieau M, Verdonck D. Facing temptation: the neural correlates of gambling availability during sports picture exposure. Cogn Affect Behav Neurosci. 2018;18(4):718-729. doi:10.3758/s13415-018-0599-z
Daniel R, Pollmann S. A universal role of the ventral striatum in reward-based learning: evidence from human studies. Neurobiol Learn Mem. 2014;114:90-100. doi:10.1016/j.nlm.2014.05.002
Delgado MR, Locke HM, Stenger VA, Fiez JA. Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cogn Affect Behav Neurosci. 2003;3(1):27-38. doi:10.3758/cabn.3.1.27
Fouragnan E, Retzler C, Philiastides MG. Separate neural representations of prediction error valence and surprise: evidence from an fMRI meta-analysis. Hum Brain Mapp. 2018;39(7):2887-2906. doi:10.1002/hbm.24047
Galvan A. Adolescent development of the reward system. Front Hum Neurosci. 2010;4:6. doi:10.3389/neuro.09.006.2010
Howard JD, Kahnt T. Identity-specific reward representations in orbitofrontal cortex are modulated by selective devaluation. J Neurosci. 2017;37(10):2627-2638. doi:10.1523/JNEUROSCI.3473-16.2017
Knutson B, Fong GW, Adams CM, Varner JL, Hommer D. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport. 2001;12(17):3683-3687. doi:10.1097/00001756-200112040-00016
Lopatina N, McDannald MA, Styer CV, Sadacca BF, Cheer JF, Schoenbaum G. Lateral orbitofrontal neurons acquire responses to upshifted, downshifted, or blocked cues during unblocking. Elife. 2015;4:e11299. doi:10.7554/eLife.11299
McDannald MA, Esber GR, Wegener MA, et al. Orbitofrontal neurons acquire responses to ‘valueless’ Pavlovian cues during unblocking. Elife. 2014;3:e02653. doi:10.7554/eLife.02653
O'Doherty J, Critchley H, Deichmann R, Dolan RJ. Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. J Neurosci. 2003;23(21):7931-7939. doi:10.1523/JNEUROSCI.23-21-07931.2003
Stalnaker TA, Cooch NK, Schoenbaum G. What the orbitofrontal cortex does not do. Nat Neurosci. 2015;18(5):620-627. doi:10.1038/nn.3982
Jasinska AJ, Stein EA, Kaiser J, Naumer MJ, Yalachkov Y. Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neurosci Biobehav Rev. 2014;38:1-16. doi:10.1016/j.neubiorev.2013.10.013
Brevers D, Noël X. Pathological gambling and the loss of willpower: a neurocognitive perspective. Soc Affect Neurosci Psychol. 2013;3(1):21592. doi:10.3402/snp.v3i0.21592
Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp. 1994;2(1-2):56-78. doi:10.1002/hbm.460020107
Hing N, Russell AMT, Vitartas P, Lamont M. Demographic, behavioural and normative risk factors for gambling problems amongst sports bettors. J Gambl Stud. 2016;32(2):625-641. doi:10.1007/s10899-015-9571-9
Seal E, Cardak BA, Nicholson M, et al. The gambling behaviour and attitudes to sports betting of sports fans. J Gambl Stud. 2022;38(4):1371-1403. doi:10.1007/s10899-021-10101-7
Johansen AB, Helland PF, Wennesland DK, Henden E, Brendryen H. Exploring online problem gamblers' motivation to change. Addict Behav Rep. 2019;10:100187. doi:10.1016/j.abrep.2019.100187
Wilson SJ, Sayette MA, Fiez JA. Prefrontal responses to drug cues: a neurocognitive analysis. Nat Neurosci. 2004;7(3):211-214. doi:10.1038/nn1200