Article (Périodiques scientifiques)
Demystifying API misuses in deep learning applications
Yang, Deheng; Liu, Kui; Lei, Yan et al.
2024In Empirical Software Engineering, 29 (2)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
s10664-023-10413-9.pdf
Postprint Éditeur (2.55 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
API misuse; Bug dataset; Deep learning application; Empirical study; Application program interfaces; Data driven; Empirical studies; Ie, application program interface misuse; Misclassifications; Performance; State of the art; Static analyzers; Software
Résumé :
[en] Deep Learning (DL) is achieving staggering performance on an increasing number of applications in various areas. Meanwhile, its associated data-driven programming paradigm comes with a set of challenges for the software engineering community, including the debugging activities for DL applications. Recent empirical studies on bugs in DL applications have shown that the API (i.e., Application Program Interface) misuse has been flagged as an important category of DL programming bugs. By exploring this literature towards API misuse bugs in DL applications, we identified three barriers that are locking an entire research direction. However, three barriers are hindering progress in this research direction: misclassification of API misuse bugs, lack of relevant dataset, and limited depth of analysis. Our work unlocks these barriers by providing an in-depth analysis of a frequent bug type that appears as a mystery. Concretely, we first offer a new perspective to a significant misclassification issue in the literature that hinders understanding of API misuses in DL applications. Subsequently, we curate the first dataset MisuAPI of 143 API misuses sampled from real-world DL applications. Finally, we perform systematic analyses to dissect API misuses and enumerate the symptoms of API misuses in DL applications as well as investigate the possibility of detecting them with state-of-the-art static analyzers. Overall, the insights summarized in this work are important for the community: 1) 18-35% of real API misuses are mislabelled in existing DL bug studies; 2) the widely adopted API misuse taxonomy, namely MUC, does not cover the cases of 1 out of 3 encountered API misuses; 3) DL library API misuses show significant differences from the general third-party library API misuses in terms of the API-usage element issue and symptoms; 4) Most (92.3%) API misuses lead to program crashes; 5) 95.8% API misuses remain undetectable by state-of-the-art static analyzers.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Yang, Deheng;  College of Computer, National University of Defense Technology, Changsha, China
Liu, Kui;  Huawei Software Engineering Application Technology Lab, Ningbo, China
Lei, Yan ;  School of Big Data and Software Engineering, Chongqing University, Chongqing, China ; Peng Cheng Laboratory, ShenZhen, China
Li, Li;  School of Big Data and Software Engineering, Chongqing University, Chongqing, China
Xie, Huan;  School of Big Data and Software Engineering, Chongqing University, Chongqing, China ; Peng Cheng Laboratory, ShenZhen, China
Liu, Chunyan;  School of Big Data and Software Engineering, Chongqing University, Chongqing, China ; Peng Cheng Laboratory, ShenZhen, China
Wang, Zhenyu;  School of Big Data and Software Engineering, Chongqing University, Chongqing, China
Mao, Xiaoguang;  College of Computer, National University of Defense Technology, Changsha, China
BISSYANDE, Tegawendé François d Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Demystifying API misuses in deep learning applications
Date de publication/diffusion :
mars 2024
Titre du périodique :
Empirical Software Engineering
ISSN :
1382-3256
eISSN :
1573-7616
Maison d'édition :
Springer
Volume/Tome :
29
Fascicule/Saison :
2
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
National Natural Science Foundation of China
Subventionnement (détails) :
This research was partially supported by the National Natural Science Foundation of China (Nos. 62172214, 62272072), the Natural Science Foundation of Jiangsu Province, China (BK20210279), and the Major Key Projectof PCL (No. PCL2021A06).
Disponible sur ORBilu :
depuis le 10 décembre 2024

Statistiques


Nombre de vues
92 (dont 2 Unilu)
Nombre de téléchargements
42 (dont 0 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
0
citations WoS
 
0

Bibliographie


Publications similaires



Contacter ORBilu