
https://doi.org/10.1007/s10664-023-10413-9

Demystifying API misuses in deep learning applications

Deheng Yang1 · Kui Liu2 · Yan Lei3,4 · Li Li5 · Huan Xie3,4 · Chunyan Liu3,4 ·
Zhenyu Wang3 · Xiaoguang Mao1 · Tegawendé F. Bissyandé6,7

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Deep Learning (DL) is achieving staggering performance on an increasing number of appli-
cations in various areas.Meanwhile, its associated data-driven programming paradigm comes
with a set of challenges for the software engineering community, including the debugging
activities for DL applications. Recent empirical studies on bugs in DL applications have
shown that the API (i.e., Application Program Interface) misuse has been flagged as an
important category of DL programming bugs. By exploring this literature towards API mis-
use bugs in DL applications, we identified three barriers that are locking an entire research
direction. However, three barriers are hindering progress in this research direction: misclassi-
fication of API misuse bugs, lack of relevant dataset, and limited depth of analysis. Our work
unlocks these barriers by providing an in-depth analysis of a frequent bug type that appears
as a mystery. Concretely, we first offer a new perspective to a significant misclassification
issue in the literature that hinders understanding of API misuses in DL applications. Subse-
quently, we curate the first datasetMisuAPI of 143APImisuses sampled from real-world DL
applications. Finally, we perform systematic analyses to dissect API misuses and enumerate
the symptoms of API misuses in DL applications as well as investigate the possibility of
detecting them with state-of-the-art static analyzers. Overall, the insights summarized in this
work are important for the community: 1) 18-35% of real API misuses are mislabelled in
existing DL bug studies; 2) the widely adopted API misuse taxonomy, namely MUC, does
not cover the cases of 1 out of 3 encountered API misuses; 3) DL library API misuses show
significant differences from the general third-party library API misuses in terms of the API-
usage element issue and symptoms; 4) Most (92.3%) API misuses lead to program crashes;
5) 95.8% API misuses remain undetectable by state-of-the-art static analyzers.

Keywords API misuse · Deep learning application · Bug dataset · Empirical study

Communicated by: Denys Poshyvanyk

B Yan Lei
yanlei@cqu.edu.cn

Extended author information available on the last page of the article

0123456789().: V,-vol 123

Empirical Software Engineering (2024) 29:45

Accepted: 18 October 2023 / Published online: 16 February 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10413-9&domain=pdf
http://orcid.org/0000-0003-4504-6806

1 Introduction

While “software is eating theworld”, deep learning (DL) is rapidly swallowing software engi-
neering in various application areas CEO Nvidia (2023), ranging from futuristic (e.g., code
generation) Yang et al. (2020); Cambronero et al. (2019); Svyatkovskiy et al. (2020), safety-
critical (e.g., self-driving carsKuutti et al. 2020 ormedical diagnosis Liu et al. 2019) to simple
leisure (e.g., gaming) applications.Meanwhile, the newprogramming paradigmofDL,which
trains problem-solving models with massive data rather than handcrafting decision-making
programs, has brought new debugging challenges to the software community Dilhara et al.
(2021); Meijer (2018). Towards enabling the emergence of novel approaches to address the
requirements of DL development and debugging, several empirical studies (Zhang et al.
2018; Humbatova et al. 2020; Zhang et al. 2020; Chen et al. 2021; Islam et al. 2019a; Zhang
et al. 2019; Islam et al. 2020) have been conducted in recent years to characterize bugs in DL
applications. Across all such studies, API misuse is presented as a common and important
category of bugs in DL applications. In a more recent survey, Lamothe et al. (2021) reported
that API misuse is one of the three major API evolution challenges for practitioners. There-
fore, there is a need to deepen the community knowledge of API misuses in DL applications
to boost the debugging momentum of these bugs in the ever-increasing portion of software
that relies on DL.

However, by exploring the literature on API misuses in DL applications, we identify three
barriers that impede the comprehensive understanding of practitioners and the development
of automated techniques towards API misuses in DL applications. The first barrier relates to
the inconsistent definitions of API misuses in the literature targeting DL applications. After
a systematic literature review on empirical studies that cover API misuses in DL applications
(listed in Table 1), we observed that these studies present different or even obscure definitions
on API misuses. For example, API incompatibility/update issues are also considered as API
misuses (Zhang et al. 2020; Islam 2020). Yet, at least one previous study Zhang et al. (2018)
on TensorFlow-based program bugs has placed such in the category of API change bugs.
Such inconsistencies in the fundamental definition increase the difficulty of an in-depth
study on API misuses in DL applications. Therefore, we propose to remove the first barrier
by investigating the following research question:
RQ1: how can API misuses be defined to ensure that they can be differentiated from other
bugs occurring in DL applications?

The second barrier is characterized as the limitation of current API misuses datasets in
DL applications to support future research. To build knowledge, one requires reliable data.
However, despite increasing attention in the community Wan et al. (2021), such data is
missing regarding API misuses in DL applications. Prior empirical studies did not publicly
release their datasets (e.g., Zhang et al. 2020; Wan et al. 2021), investigated a relatively small
number of API misuse cases (e.g., 33 in Zhang et al. 2018), or mixed API misuses within
other bug datasets (e.g., Zhang et al. 2018; Humbatova et al. 2020). In particular, existing
publicly available datasets contain at most 33 API misuses (i.e., 33 Zhang et al. 2018) in DL
applications. Such scale of dataset still has limitations in supporting a further study on API
misuses in DL applications. We thus propose to resolve a second barrier by answering the
question:
RQ2: where can we collect a significant number of API misuse samples from real-world
DL applications to publicly release for the community?

The third barrier corresponds to a limited depth in the analyses ofAPImisuses inDL appli-
cations. API misuses in traditional software code have seen in-depth studies in the literature

123

45 Page 2 of 36 Empirical Software Engineering (2024) 29:45

Ta
bl
e
1

T
he

re
vi
ew

ed
lit
er
at
ur
e
th
at
in
vo
lv
es

st
ud
y
of

A
PI
-r
el
at
ed

bu
gs

in
D
L
ap
pl
ic
at
io
ns

L
ite
ra
tu
re

Y
ea
r

V
en
ue

D
at
as
et

A
PI

m
is
us
e
de
sc
ri
pt
io
n

Z
ha
ng

et
al
.(
20

18
)

20
18

IS
ST

A
A
va
ila

bl
e

33
(1
8.
9%

)
A
PI

m
is
us
es

ou
to

f
17

5
bu
gs

in
Te
ns
or
flo

w
pr
oj
ec
ts
ar
e
id
en
tifi

ed
.

H
um

ba
to
va

et
al
.(
20

20
)

20
20

IC
SE

A
va
ila
bl
e

Fo
r
A
PI

bu
gs
,t
he

m
os
tf
re
qu
en
ti
s
w
ro
ng

A
PI

us
ag
e
(i
.e
.,
A
PI

m
is
us
e)
.

Is
la
m

et
al
.(
20

19
b)

20
19

ar
X
iv

U
na
va
ila

bl
e

−
C
he
n
et
al
.(
20

21
)

20
19

IC
SE

A
va
ila

bl
e
bu
tn

ot
pe
rt
in
en
t

D
ev
el
op

er
s
of
te
n
m
is
us
e
re
le
va
nt

A
PI
s
pr
ov
id
ed

by
D
L
fr
am

ew
or
ks
.

Z
ha
ng

et
al
.(
20

19
)

20
19

IS
SR

E
U
na
va
ila
bl
e

A
PI

m
is
us
e
is
on
e
of

th
e
5
m
ai
n
ro
ot

ca
us
es

of
D
L
pr
og
ra
m
m
in
g
is
su
es
.

Is
la
m

et
al
.(
20

19
a)

20
19

FS
E

U
na
va
ila
bl
e

M
os
to

f
th
e
no
n
m
od
el
re
la
te
d
bu
gs

ar
e
ca
us
ed

by
A
PI

M
is
us
e
(6
%

-
10
0%

).

Z
ha
ng

et
al
.(
20

20
)

20
20

IC
SE

U
na
va
ila

bl
e

13
8
(2
0.
7%

)
fr
am

ew
or
k
A
PI

m
is
us
es

ou
to

f
66

8
D
L
-s
pe
ci
fic

bu
gs

ar
e
id
en
tifi

ed
.

W
u
et
al
.(
20

21
)

20
21

ar
X
iv

U
na
va
ila

bl
e

−
Is
la
m

et
al
.(
20

20
)

20
20

IC
SE

A
va
ila

bl
e

−

123

Page 3 of 36 45Empirical Software Engineering (2024) 29:45

(Amann et al. 2016, 2018, 2019; Kechagia et al. 2021) towards proposing widely adopted
taxonomies (e.g., Amann et al. 2018 identified 14 categories of API misuses). However, API
misuse for DL is different from traditional applications for the following three aspects: (1)
many DL frameworks, such as TensorFlow and PyTorch, are implemented in dynamically
typed languages, i.e., Python. This makes it harder to catch errors during the development
process, as errors related to parameter types are not detected until runtime. This can lead to
more frequent API misuses in DL applications compared to traditional applications. (2) DL
applications often deal with large amounts of data, which can be challenging to manage and
process correctly. This can lead to API misuses related to data handling, such as incorrect
data types or shapes being passed to an API. (3) DL applications rely heavily on specialized
libraries and APIs that may not be widely used in traditional applications. This means that
developers may not have as much experience or knowledge of these libraries, which can lead
to more frequent API misuses. In other words, API misuses in DL applications have been
superficially approached, where the literature still needs to close the gap in understanding
the specificities of such bugs in the context of DL. For example, questions on whether API
misuses in DL applications can be detected by existing analysis tools for traditional programs
remain unanswered. Thus, we propose to take up the challenge of tackling the question:
RQ3: what are the specific characteristics of API misuses in DL applications?

The aforementioned three barriers could impede the understanding of DL application
practitioners on resolving such API misuses in development activities. The aforementioned
three barriers could impede the understanding of DL application practitioners on resolving
such API misuses in development activities, and they could also block the prototyping of
automated detection or repair tools for APImisuses in DL applications. TheAPI specification
(i.e., API usage contract) needed byAPImisuse repair techniques cannot be directly obtained
from the API documentation, as API documentation is typically written in natural language
and often implicitly encodes part of but not complete API usage contract (e.g., raising an
Exception when the parameter is null). In this way, it is difficult to construct repair tools from
API specifications and documentation. This also explains why existing API misuse detection
or repair tools for traditional applications are constructed by collecting examples (Amann
et al. 2018; Kechagia et al. 2021; Lamothe et al. 2021; Ren et al. 2020).

To bridge the gap, in this paper, we address the first barrier by defining API misuse iden-
tification rules and identifying misclassification cases in the literature, the other two barriers
by establishing a curated dataset, proposing a two-dimensional taxonomy, and analyzing
real-world API misuses in TensorFlow applications. Ideally, the best practice is to cover as
many DL libraries (e.g., PyTorch Paszke et al. 2017, Keras Gulli and Sujit 2017, Caffe Jia
et al. 2014, Theano Al-Rfou et al. 2016) as possible. However, the manual labelling process
during dataset construction is a highly time-consuming task. Therefore, we finally follow
the work of Zhang et al. (2018) to restrict our scope to DL applications of TensorFlow, one
representative DL library. Even with such scope, the labelling task in our work spans two
months and consumes around 315.2 hours on average for each of the four human labelers.
Our dataset could serve as an open-source benchmark, and our associated taxonomy and
analysis of API misuses could serve as a reference point for future related research.

The main contributions of our work include:

– [Fundamentals]Weaddress a fundamental question around the definition ofAPImisuses
in DL applications. We propose two explicit identification rules to help practitioners
consensually and unequivocally identify API misuses in DL applications. Based on these

123

45 Page 4 of 36 Empirical Software Engineering (2024) 29:45

rules, we expose a non-negligible proportion of mislabelled API misuses in two existing
bug datasets of DL applications (with respectively 18.2% and 35% mislabelled cases of
API misuses).

– [Dataset] We build and share the first publicly available dataset for API misuses in
DL applications.MisuAPI includes 143 API misuse samples collected from 39 popular
TensorFlow projects. We expect MisuAPI to bootstrap several research and engineering
efforts around API misuses in DL applications.

– [Characterisations] We propose a two-dimensional taxonomy and then conduct an in-
depth analysis that investigates the characteristics of API misuses in DL applications in
terms of the API-usage element issues, scopes, and symptoms. Among other findings,
we highlight that the widely employed MUC taxonomy Amann et al. (2018) fails to
cover a third of API misuses that we have encountered and shared in MisuAPI. About
40% API-usage element issues in DL applications do not occur in traditional programs.
Among API misuses identified in different code, DL library API misuses significantly
differ fromgeneral third-party librarymisuses: the former involves, for a large proportion,
issues with wrong parameter types and missing API calls. We also found that, overall,
92.3% of API misuses in DL applications lead to program crashes.

– [Detectability]We investigate the possibility of detectingAPImisuses inDLapplications
by leveraging four state-of-the-art static analyzers: we observe that 95.8% ofAPImisuses
cannot be detected by the existing tools. This finding is a strong call for more research
efforts on proposing adapted effective detectors targetingAPImisuses inDL applications.

The remainder of the paper is structured as follows. We explore the first two research
questions in Sections 2 and 3 respectively. To investigate RQ3, we study the characteristics
of API misuses in DL applications in Section 4, and employ static analyzers to detect these
bugs in Section 5. Then, we draw on practical implications of our study to provide directions
for future research in Section 6. In Section 7,we discuss the relatedwork. Finally,we conclude
in Section 8.

2 On the Fundamentals of API Misuse

In this Section,we aim to answer theRQ1 (how canAPImisuses be defined to ensure that they
can be differentiated from other bugs occurring in DL applications?) mentioned in Section 1.
The organization of this Section is shown as follows: We first introduce the importance of
clear API misuse identification rules in Section 2.1. Then, we recall the definition of API
misuse in Section 2.2, and summarize two explicit rules for identifying API misuse in DL
applications in Section 2.3. Finally, in Section 2.4, we review the API misuse bugs of DL
applications in the literature by using the explicit rules.

2.1 Motivation

API-related bugs are reported to be commonplace in both traditional programs Zhong and
Zhendong (2015) and DL applications (Zhang et al. 2018; 2020). One common type of such
bugs is “API misuse”, which is often studied as an individual and non-trivial bug category
in prior work targeting traditional applications (Amann et al. 2016, 2018; Kechagia et al.
2021; Ren et al. 2020; Lamothe et al. 2021; Li et al. 2021; Nielebock et al. 2020; Wen et al.
2019; Zhang et al. 2018; Kechagia et al. 2019). However, in recent studies involving API
misuses in DL applications, the API misuses are always mixed with API incompatibility

123

Page 5 of 36 45Empirical Software Engineering (2024) 29:45

bugs. Figure 1 presents an example of an API incompatibility problem caused by the updated
TensorFlow version. The client code in Keras invokes softmax() in TensorFlow 1.3,
but it uses TensorFlow 1.5 which has changed the softmax() code as the library. This
finally led to the error “TypeError: softmax() got an unexpected keyword argument ‘axis’
while using layers.Dense”. An API incompatibility issue is often interpreted as a situation
where the invoked API in the project is no longer supported by the third-party library due
to the API evolution. Both the case where the name of the API changes and the case where
the parameter list changes could lead to API incompatibility issues. API deprecation is an
example of such situation, as API deprecation occurs when the invoked API is discarded by
the third-party library Scalabrino et al. (2019). Accordingly, such issues are often fixed by
updating the version of the third-party library, while API misuse is often fixed by changing
the client code. Such API incompatibility issues are categorized into API misuse by Zhang
et al. (2020), but they are classified as “API changes” in the study on TensorFlow program
bugs Zhang et al. (2018). The inconsistent classification wouldmake practitioners fail to have
a clear understanding of API misuse in DL applications.

In the literature, Amann et al. (2016) defined the API misuse as: “An API misuse is an
API usage that violates the API’s contract, as opposed to one that does not comply with
the client code’s logic”. For example, a contract violation occurs when a method call in the
client application passes a null parameter to the API, which requires a non-null parameter
and otherwise would raise an exception, without any exception handling actions. Another
example is not closing a file stream after finishing writing content into it. In contrast, the
bugs where the API usage does not comply with the client code’s logic (e.g., querying the
wrong database column) are not API misuses. This definition of API misuse has been widely
used in the community (Amann et al. 2016, 2018, 2019; Kechagia et al. 2021; Ren et al.
2020; Lamothe et al. 2021; Li et al. 2021; Nielebock et al. 2020; Wen et al. 2019; Zhang
et al. 2018; Kechagia et al. 2019). Following this definition, we systematically reviewed the
descriptions of API misuses in the studies listed in Table 1, however, we observe that these
studies present inconsistent definitions on API misuses. It finally results in the inconsistent
classifications on “API misuses”, which however could hinder characterizing API misuses
in DL applications.

Fig. 1 Code snippet excerpted from the literature Zhang et al. (2020), where the API incompatibility issue is
classified into the API misuse category

123

45 Page 6 of 36 Empirical Software Engineering (2024) 29:45

2.2 Recalling API Misuse Definition

In the definition of API misuse provided by Amann et al. (2016), the API’s contract denotes
the API usage constraints, which can be obtained by mining the explicit API knowledge
from its source code and documentation or extracting implicit API knowledge from its usage
examples (Amann et al. 2016, 2018). As presented in Fig. 2, the usage constraint of the API
os.listdir() is to check if the target directory exists before calling os.listdir().
Violating this usage constraint without the non-directory path checking caused the misuse of
this API and resulted in the NotADirectoryError at runtime.

The definition of API misuse highlights where the usage constraints of the misused API
are derived from, i.e., the API providers who develop and expose the API. As discussed by
Lamothe et al. (2021) in the systematic review of API evolution literature, the characteristics
ofAPImisuse differ fromother typical API-related bugs, where theAPImisuse is categorized
into the API usability issues, while other API-related bugs with respect to APImigration, API
deprecation, and API incompatibility issues are grouped into the API maintenance issues.
Our research scope is consistent with this work, i.e., considering API misuse as an individual
topic and characterizing it from other API-related bugs.

2.3 Summarizing API Misuse Identification Rules

Based on the review and analysis, we summarize two explicit identification rules for API
misuses against other API-related bugs:

1. Considering sources of usage constraints. The usage constraints of the misused API
originate from the API itself. Therefore, the API source code and documentation are
necessary to identify an API misuse.

2. Excluding relationship with APImaintenance. The basic premise of API misuse iden-
tification is that the API version is specified. Therefore, all usage constraints of API
misuse come from the individual and specific API version, rather than multiple versions
due to API maintenance.

The two rules are consistent with the definition of API misuse Amann et al. (2018) and
common practices of API misuse literature review Lamothe et al. (2021) and API misuse
dataset construction Amann et al. (2016). The first identification rule identifies the source
for obtaining the API usage constraints during misuse identification, and the second rule
further helps us distinguish API misuses from other API-related bugs (e.g., incompatibility
issues). Such rules further enable us to perform an investigation on the misclassification
issues ofAPImisuses inDL applications. The identification rules aim to assist practitioners in
collaboratively and unambiguously recognize API misuses in the context of DL applications.
To our knowledge, this is the first work to identify the boundary of API misuse in DL
applications by presenting a clear definition and actionable rules for identifying API misuses.

Fig. 2 A bug fixing commit of an API misuse from the facenet project3

123

Page 7 of 36 45Empirical Software Engineering (2024) 29:45

Table 2 Results of revisiting API
misuse classification in terms of
false positives and false negatives

Zhang et al. (2018) Humbatova et al. (2020)

Bugs 175 375

API bugs 77 20

API misuses 33 10

False positives 2 1

False negatives 12 6

One representative example is that, in prior work such as the work of Islam et al. (2020), we
checked all 60 “API bugs” labelled by Islam et al. Based on the API misuse definition and
identification rules, we finally identified there exists only one API misuse in these API bugs,
of which our check results are publicly available for further check of researchers NEW API
(2023). The API misuse definition and identification rules we provided in this paper could
ease the process of identifying API misuse from API-related bugs.

2.4 Reviewing API Misuse of DL Applications in the Literature

With the API misuse definition and the two misuse identification rules, we systematically
review the literature to investigate to what extent API misuses in DL applications are mis-
classified. Specifically, we form the search query with boolean “AND” and “OR” operators:
(bug OR fix) AND (deep learning) OR (API misuse). We apply the search query on five clas-
sic electronic databases (i.e., ACM Digital Library, IEEE Xplore, Springer Link, Elsevier
Science Direct, andWiley) and one search engine (i.e., Google Scholar) to ensure the reliable
coverage of state-of-the-art publications.We also consider grey literatureWohlin et al. (2012)
(e.g., technical reports, theses) to mitigate publication bias Wohlin et al. (2012). The search
was performed on March 28th, 2021.

For each collected publication that involvesAPImisuses inDL applications, we first check
if there is any publicly available dataset for our further verification. If such dataset is available,
we manually review all API-related bugs and identify API misuses from these bugs, based
on the identification rules summarized above. To mitigate the threat of potential subjectivity,
four authors independently performed the bug review and misuse identification. Since the
manual labelling process involves the independent validation of four authors, we further
compute the inter-rater reliability score, i.e., Cohen’s kappa coefficient (κ) McHugh (2012)
to measure the level of consensus between authors. According to the guideline of Landis
and Koch (1977), they characterize κ < 0 as representing no agreement, κ ∈ [0.01, 0.20] as
slight, κ ∈ [0.21, 0.40] as fair, κ ∈ [0.41, 0.60] as moderate, κ ∈ [0.61, 0.80] as substantial
and κ ∈ [0.81, 1.00] as almost perfect agreement. The κ score in our labelling process
between all the authors ranges from [0.79, 0.95], indicating at least a substantial agreement
of the labelling process.

For the inconsistent labels, the authors discussed until an agreement is achieved. All the
labels and annotations of the process are made publicly available for researchers or potential
users to further validate the results DehengYang (2023).

Table 1 presents the identified literature that involves the study of API misuses in DL
applications. By manually checking their statement on API misuse, we observe that almost
half of (i.e., Chen et al. 2021, Zhang et al. 2019, Islam et al. 2019b, Wu et al. 2021) these
publications give no explicit definition for API misuses in DL applications. Furthermore, for
publications that explicitly provide a definition ofAPImisuses, the inconsistency between the

123

45 Page 8 of 36 Empirical Software Engineering (2024) 29:45

Fig. 3 An API misuse labelled as an API change bug. The issue report: The arguments for tf.concat were in
the opposite order of the API documentation

definitions of publications (e.g., the aforementioned example illustrated in Fig. 1) also exists.
These issues pose threats to the stable identification of API misuses in DL applications. On
the other hand, among the nine publications, we found that Zhang et al. (2018); Humbatova
et al. (2020); Chen et al. (2021), and Islam et al. (2020) provide publicly available datasets.
Among the four publications, the API misuses provided by Chen et al. (2021) are related
to a specific DL application, i.e., the deployment of DL models on mobile devices, which
is limited to analyze the overall characteristics. Islam et al. (2020) provided a large dataset
that contains 415 bugs from Stack Overflow and 555 bugs from GitHub, but API misuse
is not explicitly identified in the dataset. To be conservative, we exclude the dataset in our
review process. Thus, we obtain two datatsets in Zhang et al. (2018); Humbatova et al.
(2020). Unfortunately, as reported in the literature Zhang et al. (2018); Humbatova et al.
(2020), the two bug datasets only contain 33 and 10 API misuses respectively, which may
be insufficient to support a comprehensive analysis, as compared to the popular API misuse
dataset containing 90 Java API misuses Amann et al. (2018).

✍ ❛❛Finding 1: We observed a lack of explicit definition of API misuse for almost half
of reviewed literature as well as the existence of inconsistent definitions, which may
threaten the stable identification of API misuses. Furthermore, two datasets with explicit
API misuses contain no more than 33 API misuses in DL applications, which further
motivates our dataset construction and in-depth analyses. ❜❜

To verify if there exist any misclassification cases of API misuses in DL applications, we
perform the bug review and API misuse identification on the two datasets. Specifically, we
first select all bugs that are labelled as API-related bugs by the dataset constructors. This
leads to a total of 77 API-related bugs (i.e., 44 API change bugs and 33 API misuse bugs
Zhang et al. 2018) and 20 API-related bugs (i.e., ten API misuses and ten other API-related
bugs Humbatova et al. 2020). Then, for each API-related bug, we identify two classes of API
misuse misclassification: 1) false positive: the non-API misuse was mislabelled as an API
misuse, 2) false negative: the API misuse was not identified as an API misuse.

Table 2 shows the number of false positives and false negatives ofAPImisuse identification
in twodatasets.Weobserved a total of 14 (18.2%=14/77)mislabelled cases in thefirst dataset,
including two false positives and 12 false negatives. For the second dataset, we observed one
false positive and six false negatives, accounting for 35% (=7/20) in total. Awrongly-labelled
example is shown in Fig. 3. The call of tf.concat in the buggy code passed incorrect
parameters (i.e., with the reverse order), which violates the parameter type constraints of
the API, resulting in “TypeError” finally4. The content of the footnote demonstrates that the
bug is an API change bug. API change bugs occur when the behavior of an API changes
unexpectedly, often due to updates or changes to the implementation of API. This can result

4 https://github.com/tensorflow/models/pull/1532

123

Page 9 of 36 45Empirical Software Engineering (2024) 29:45

https://github.com/tensorflow/models/pull/1532

in code that previously worked correctly no longer functioning as expected, leading to bugs
or other issues.

✍ ❛❛Finding 2: The systematic review of the bug datasets of DL applications reveals the
insufficient number of API misuses and a non-negligible proportion of misclassification
cases, which reveals the need to curate a dataset exclusively for API misuses in DL
applications ❜❜

3 Dataset Curating

In this Section, we target at the RQ2 (where can we collect a significant number of API
misuse samples from real-world DL applications to publicly release for the community?).

3.1 Motivation

A large-scale high-quality dataset could significantly boost the development of the associated
research area (e.g., the widely used Defects4J dataset Just et al. 2014 for automated program
repair). Constructing a large-scale dataset of real-world API misuses in DL applications
is important in helping increase the reliability of taxonomy construction and providing an
infrastructure for future API misuse detection or repair tool evaluation. Furthermore, a larger
dataset with a focus on API misuse in DL applications could help researchers understand the
common patterns and issues that arise in different DL applications. While existing datasets
are still limited to a small sample size, we propose to build a dataset exclusively for API
misuses in DL applications and the characterizing task.

3.2 Overview

Figure 4 describes our semi-automated approach to constructing the dataset. We first collect
the commits with respect to bug fixes with related keywords from real-world open-source
projects, and filter out non-bug fixes by leveraging the abstract syntax tree (AST) differencing
toolGumTreeFalleri et al. (2014). To avoid bias in the automated identification andvalidation,
we manually identify the commits related to fixing API misuses from a sampled dataset. The
details of our approach are presented as follows.

3.3 Selecting Subjects

There are over 10 deep learning frameworks (e.g., TensorFlow Abadi et al. 2016, Caffe Jia
et al. 2014, Keras Gulli and Sujit 2017, PyTorch Paszke et al. 2017) released for various deep
learning tasks. In this paper, we follow the workaround of Zhang et al. (2018) to focus on
TensorFlow framework, which is the most popular framework in the year 2021 according to
the number of TensorFlow-dependent projects (i.e., 104,501) Tensorflow (2021). We employ
GitHub search API Github API (2021) to collect TensorFlow projects in GitHub. First, we
form a query “tensorflow” to search all TensorFlow-related projects. Then, we fed a query
“import tensorflow” into GitHub search API to filter out these projects that are TensorFlow-
related but have no source code using TensorFlow APIs. With such strategy, we finally
collected 200 top-rated TensorFlow dependents in terms of their starred times (on April

123

45 Page 10 of 36 Empirical Software Engineering (2024) 29:45

API

Top-rated
projects

Historical
commits

Keyword
filter

Gumtree
filter

Potential
Bug fixes

Potential
API-related

Manual
identificationAPI

• Commit message
• Issue report
• API usage context
• API documentation

Manual
untangling

Extract

Validated
API misuse

API misuseMisuAPI

Gather

C
heckout

API

Fig. 4 Overview of the dataset curating approach

1st, 2021), of which the largest starred times reach up to 69,267 and the smallest is 1,143.
Following the practice of Dilhara et al. (2021), we use the term “top-rated” in this paper to
denote the projects with the largest stargazers counts.

3.4 Collecting Commits Related to API Issues

The 200TensorFlow dependent repositories contain 135,548 history commits. First, we apply
a keyword matching strategy (checking whether the commit message contains the related
keywords), which is widely adopted in the literature (Zhang et al. 2018; Humbatova et al.
2020; Zhong and Zhendong 2015; Liu et al. 2018), to collect commits related to bug fixes.
Specifically, we choose the keywords by combining the keyword list considered in previous
DL bug studies (i.e., “bug”, “defect”, “issue”, “problem”, “error”, “fault”, “fail”, “wrong”,
“nan”, “inf”, “crash”, “fix”, “solve”, and “repair”) Zhang et al. (2018); Humbatova et al.
(2020) to ensure comprehensive coverage of potential bug fixes. Through this stage, 33,510
commits related to bug fixes are collected. Note that some existing tools (e.g., GitcProc
Casalnuovo et al. 2017) can be used for the filtering process, while we adopt Gumtree to
parse commits and identify API changes.

“Bug fixing” related keywords would be used to describe changes of non-API related bug
fixes. We further employ GumTree5, an AST differencing tool, to parse the code changes
which are used to identify the API-related modifications by checking if there is any modi-
fication (i.e., insert, delete, update, or move Falleri et al. (2014)) on the API element (i.e.,
represented as the atom_expr in GumTree output). As our scope is to investigate API
misuses in DL applications, changes to any API used in the DL application will be identified
as API-related commits. Finally, 19,395 commits are left as potential bug-fixing commits of
API-related issues.

5 https://github.com/GumTreeDiff/gumtree/tree/v3.0.0-beta1

123

Page 11 of 36 45Empirical Software Engineering (2024) 29:45

https://github.com/GumTreeDiff/gumtree/tree/v3.0.0-beta1

Table 3 Results of curating
dataset

Stage Number

All commits 135,548

Commits filtered with keywords 33,510

Commits filtered with Gumtree 19,395

Sampling commits 3,639

Commits after manual identification 123

API misuse cases after manual untangling 143

3.5 Manual Identification and Untangling

The number of 19,395 commits is still too large for the manual identification and validation
activity. To resolve this issue, we randomly select 80 projects without any bias, of which
corresponding 3,639 commits are then selected from the 19,395 ones. Even with such a
sampling, the sample size reaches the largest manual validation size compared to related
studies on bugs in DL applications (Zhang et al. 2018; Humbatova et al. 2020; Islam et al.
2019a). Furthermore, the manual identification and untangling process in this paper spanned
two months and consumed around 315.2 hours on average for each of the four authors.
Specifically, API misuse identification is to identify whether the bug fixing commit includes
at least an API misuse. API misuse untangling aims to distill the changes of API misuses
from other unrelated changes.

In the identification process, we follow the explicit identification rules presented in
Section 2 for API misuse identification. Specifically, we carefully read the commit mes-
sage, linked issues/bug reports, the buggy API usage context, as well as API documentation,
to verifywhether theAPI-related buggy code violates theAPI usage constraints. To ensure the
quality of our dataset, four authors of this paper independently labelled each of API misuses
for the sampled 3,639 commits, respectively. The κ score in our labelling process between
all the labelers ranges from [0.72, 0.93], indicating at least a substantial agreement of the
labelling process. For the inconsistent labels, the four authors discuss until an agreement is
achieved. Finally, 123 commits are identified as API misuse fixing commits. In the untan-
gling step, we further perform manual efforts to untangle the code changes unrelated to API
misuses based on our previous identification results, to obtain a curated dataset. Eventually,
we collect 143 bugs of API misuse in DL application to build our dataset, as it is not rare
case where one commit contains multiple API misuses Amann et al. (2016). All the results
are summarized in Table 3.

Note that we include all DL-specific API misuses and non-DL-specific API misuses that
reside in the DL projects. Our fundamental intuition is that all API misuses rather than just
DL-specific ones deserve to be studied, as all these misuses could bring runtime crashes to
the programs. Concretely, our dataset is collected from DL applications, which not only use
the DL-specific APIs, but also heavily rely on general third-party APIs. Similarly, the dataset
collected by Zhang et al. (2018) also contains bugs that are unrelated to Tensorflow, i.e., the
bugs are general bugs, not DL-specific bugs.

The inner misuses are also part of the API misuse in DL applications. We would like
to clarify that the inner API misuse is not specifically related to DL library API. Figure 5
shows the example of inner API misuse in DL applications. In line 101 of the Python file
“audio.py”, the developer created a function named _griffin_lim with two parameters (S and
hparams). Butwhen the developer called the function at line 77, therewas only one parameter.

123

45 Page 12 of 36 Empirical Software Engineering (2024) 29:45

Fig. 5 The example of the inner-project API misuse in a real-world DL application Mama (2023)

This function call is a typical inner-project API misuse, which could be also common in the
practical development activities of practitioners.

So far, there has been no comprehensive system evaluation for DL application API misuse
because of the lack of a dedicated dataset for such purposes. To this end, we construct and
provide the datasetMisuAPI exclusively for API misuses within DL applications. The avail-
ability of a curated dataset could always create new momentum for the associated research
areas (e.g., Defects4J Just et al. 2014 for general Java bugs, and Mubench Amann et al. 2018
for Java API misuses). To our knowledge, MisuAPI is the first publicly available dataset
exclusively for API misuses in DL applications. Furthermore, in terms of the scale of dataset,
comparing against the popular API misuse dataset in Java (i.e„ Mubench that consists of
90 API misuses), our MisuAPI contains 53 more API misuses. MisuAPI could be used for
an in-depth analysis of API misuses in DL applications as well as an evaluation for future
automated API misuse detection or repair techniques.

✿ Publicly Available Dataset MISUAPI

We construct MisuAPI, the first publicly available dataset exclusively for API misuses
in DL applications. MisuAPI contains 143 API misuses collected from 39 popular Ten-
sorFlow dependent projects and is publicly available at https://github.com/DehengYang/
MisuAPI.

4 Characteristics

In this section, we aim to investigate the characteristics of API misuses in DL applications
based on the curated dataset. To present a comprehensive view of the characteristics to
developers or researchers, we first present a two-dimensional taxonomy of misused APIs

123

Page 13 of 36 45Empirical Software Engineering (2024) 29:45

https://github.com/DehengYang/MisuAPI
https://github.com/DehengYang/MisuAPI

in DL applications. Then, we dissect API misuses in terms of the proposed categories, and
describe the corresponding symptoms that are caused by API misuses.

4.1 Motivation

Taxonomy is a scheme of classification Usman et al. (2017) and has been intensively
employed by Software Engineering to represent the theory of a specific field and support
the exploration of new knowledge related to the field (Humbatova et al. 2020; Amann et al.
2018; Institute of Electrical and Electronics Engineers 1987; Forward and Lethbridge 2008;
Unterkalmsteiner et al. 2014; Šmite et al. 2014). Taxonomy plays a critical role in knowledge
representation and discovery, especially for the scarcely explored topic (e.g., API misuse in
DL applications). As revealed by prior studies (Zhang et al. 2018; Humbatova et al. 2020;
Zhang et al. 2020; Chen et al. 2021; Islam et al. 2019a; Zhang et al. 2019; Islam et al. 2020),
there exist significant differences between bugs in traditional and DL applications. There-
fore, it is worth proposing a new taxonomy exclusively for API misuse in DL applications
to facilitate an in-depth study. In this paper, we construct and compare our taxonomy against
existing taxonomy to explore the unique categories of API misuse in DL applications. Fur-
thermore, the taxonomy enables us to perform an in-depth dissection and distill new findings
of API misuse in DL applications.

4.2 Taxonomy of Misused APIs in DL Applications

Typically, there are four main types of taxonomy Usman et al. (2017): 1) hierarchy; 2) tree;
3) paradigm; 4) faceted analysis. In this work, to systematically investigate the characteris-
tics of API misuses in DL applications, we propose to build a paradigm-based taxonomy.
A paradigm-based taxonomy is generally represented as a two-dimensional structure where
entities are presented by the intersection of two specified attributes (Usman et al. 2017;
Kwasnik 1999). Specifically, our paradigm-based taxonomy consists of two dimensions of
interest: API-usage element Amann et al. (2018) and Scope. API-usage element is a pro-
gram element that appears in API usages Amann et al. (2018). This dimension includes five
types: Incorrect parameter, Missing API call, Missing checking condition, Missing exception
handling and Incorrect API call sequence. Scope is related to the sources of the misused API,
where the API knowledge is defined (e.g., the TensorFlow library that provides the misused
API tf.concat() in Fig. 3). Specifically, the Scope refers to “scope" as the scope in
which the API call is defined, as opposed to the scope in which it is misused. It includes
three categories: DL library, General third-party library and Inner-project. To obtain a com-
prehensive understanding of API misuses in DL applications, we consider API misuses that
derive from the project itself (i.e., inner-project misuse) and third-party libraries.

The inner-projectmisuse and third-party libraries inDLapplications are also indispensable
topics since the DL applications not only use the DL-specific API, but also use other types
of API (e.g., the API related to data loading). The analysis of other types of API misuse in
DL applications could help researchers be aware of the existence of general API misuse. The
Scope could pinpoint the sourceswhere theAPI usage constraints reside for providing insights
into future API misuse detection techniques. Similarly, we find that the literature Zhang et al.
(2018) also claims some bugs in TensorFlow programs are unrelated to TensorFlow. Thus, it
is still necessary to discuss all the API misuse in DL applications, not limited to DL-specific
API misuse.

123

45 Page 14 of 36 Empirical Software Engineering (2024) 29:45

Fig. 6 Example of a misused API with incorrect parameter type Mama (2021)

We select the API-usage element issue as the first dimension of our taxonomy as it
could be used to indicate the bug patterns of API misuses as well as the corresponding fixing
strategies. In terms of scope, we include it as the second dimension as it pinpoints the sources
where the API usage constraints reside for providing insights to future API misuse detection
techniques. This taxonomy serves as a basis for our exploration of the characteristics of API
misuses in DL applications.

Incorrect Parameter Typemeans the API is misused by passing a parameter with incor-
rect type(s). Figure 6 shows the API compute_gradients() defined in TensorFlow is
misused with an incorrect parameter that finally raises a TypeError at runtime. Incorrect
Parameter Value means the API is misused by passing a parameter with incorrect value(s).
Figure 7 shows the value of the dtype parameter in tf.ones_like() is expected to
be tf.int32 as tf.scatter_nd() does not support bool on GPUs. Missing API
Call denotes the absence of an API call required by the API usage constraints, such as
the example shown in Fig. 8, where the tf.device() required by the dequeue() is
not called as expected in the client project. Missing Condition misused API is caused by
the lack of a required condition checking. Figure 9 shows a misused API shape2d()
that will lead to a RuntimeError since it cannot operate on a parameter with None type
without the null check of the parameter resize. Missing Exception Handling means the
project does not take actions to handle exceptions that may be raised by the used API. As
shown in Fig. 10, the absence of an exception handling for the API run() from TensorFlow
library may result in a RuntimeError. Incorrect API call sequence represents the incorrect
order of called APIs that violates the API usage constraints. In Fig. 11, the API join() in
multiprocessing.Pool module explicitly claims that close() or terminate()
should be called before join(). The incorrect API call sequence of join() in Fig. 11
results in a memory leak.

Misuse of DL library API: this refers to the misused API that is fromDL libraries/frame-
works, such as TensorFlow. The programming diagrams of DL applications (i.e., data-driven)

Fig. 7 Example of a misused API with incorrect parameter value tf-quant-finance (2021)

123

Page 15 of 36 45Empirical Software Engineering (2024) 29:45

Fig. 8 Example of a misused API with missing API call tensorflow (2021)

Fig. 9 Example of a misused API with missing condition tensorpack (2021a)

Fig. 10 Example of a missing API with missing exception handling tensorpack (2021b)

Fig. 11 Example of a misused API with incorrect API call sequence spleeter (2021)

123

45 Page 16 of 36 Empirical Software Engineering (2024) 29:45

are significantly different from that of traditional applications (i.e., logic-driven) Zhang et al.
(2018, 2019), the DL library APIs emerge as a new category of APIs comparing with the tra-
ditional programs. The API compute_gradients() shown in Fig. 6 is a DL library API
defined inTensorFlow.Misuse of general third-partyAPI: this denotes themisusedAPI that
is defined in the general third-party libraries but not DL frameworks. For example, the mis-
usedAPIjoin() displayed in Fig. 11 is anAPI defined in themultiprocessing.Pool
module, a general third-party library used by spleeter6. Misuse of inner-project API: the
misused inner-project API denotes that the API is defined inside the DL application itself.
The example shown in Fig. 9 is a misused inner-project API defined in the DL application
(i.e., tensorpack7).

In the community of API misuses, MUC Amann et al. (2018) is a two-dimensional tax-
onomy of API misuses derived from a total of 100 Java API misuse examples, including
14 categories with two dimensions: 7 types of API-usage elements (e.g., method call, con-
dition) and 2 kinds of violation types (i.e., missing and redundant), which has been widely
adopted in API misuse studies on traditional programs (Kechagia et al. 2021; Li et al. 2021;
Nielebock et al. 2020; Kechagia et al. 2019; Bonifacio et al. 2021). However, when applying
the traditional taxonomy MUC to the API misuse in DL applications, we note that Incorrect
parameter type, Incorrect parameter value, and Incorrect API call sequence cannot be cov-
ered by the categories of MUC, which occupy up to 40% (=(30+24+3)/143) of API misuses
in our curated dataset MisuAPI. In other words, missing API call, missing condition, and
missing exception handling were already discovered by the traditional taxonomy MUC, and
there are works (Ren et al. 2020; Zhang et al. 2018) that analyze Incorrect API call sequence
of traditional software. Thus, our taxonomy includes two new types (i.e., Incorrect parameter
type and Incorrect parameter value).

To verify if the Incorrect parameter type and Incorrect parameter value misuses are
unique, we further check studies of API misuses in other applications. Since there is still
no available study of API misuses in general Python applications, to our knowledge, the
comparison with such applications is not supported yet. On the other hand, we check a recent
study of API misuses in C programs Gu et al. (2019). Although Gu et al. (2019) do not
propose a taxonomy, they present a detailed analysis of the root causes of API misuses.
One closely related root cause is improper parameter usage, but it mainly indicates the
missing preconditions when calling an API. Another closely related root cause is improper
causal function calling that denotes a redundant or missing calling of an API. The Incorrect
parameter type, Incorrect parameter value, and Incorrect API call sequence are also not
covered by the study of API misuses in C programs.

Note that Incorrect parameter type and Incorrect parameter value category may not be
specific to deep learning applications butmay bemore related to dynamically typed languages
(e.g., Python). In dynamically typed languages, the types of parameters are not explicitly
declared, and this can lead to errors related to incorrect parameter usage.

✍ ❛❛Finding 3: The misused APIs in DL applications can be summarized into Scope and
API-usage Element issue categories, of which 40% misused APIs cannot be covered by
the widely used API misuse taxonomy for traditional programs. ❜❜

Compared to existing studies listed in Table 1, our work is the first to present a taxonomy
for systematically understanding API misuses in DL applications, while those studies mainly
focus on a larger scope that covers various types of bugs in DL applications including API

6 https://github.com/deezer/spleeter
7 https://github.com/tensorpack/tensorpack

123

Page 17 of 36 45Empirical Software Engineering (2024) 29:45

https://github.com/deezer/spleeter
https://github.com/tensorpack/tensorpack

misuses. Table 4 presents the statistics of the API misuses in MisuAPI in terms of the two
dimensions of our taxonomy. Based on this Table, we further dissect the two dimensions in
the following sections.

4.3 Dissecting API Misuses with API-usage Element Issues

We first investigate the characteristics of API misuses in DL applications by dissecting them
with the API-usage element issue category The “Total (ratio)” column of Table 4 overviews
the distribution of each API-usage element issue of API misuses in DL applications. Missing
condition is the most common API-usage element issue, accounting for 32.9% (=47/143) of
all misuses. The second most common API-usage element issue is the incorrect parameter
type with 30 misused cases in MisuAPI. It is followed with the incorrect parameter value,
missing API call, and exception handling that account for 24, 21, and 18 cases, respectively.
The incorrect API call sequence as the least common API-usage element issue only includes
three cases.

Compared with traditional applications of Java API misuses Amann et al. (2018), DL
applications also suffer from API misuses about missing API call (12.6% vs. 27.3%), miss-
ing condition (32.9% vs. 43.6%) and missing exception handling (14.7% vs. 9.1%). Such
commonality is, however, ignored by prior studies (as listed in Table 1) involving API mis-
uses in DL applications. As pointed out by Dilhara et al. (2021), DL applications also share
some similarities with traditional programs. Thus, it is not surprising to observe the common
API-usage element issues in DL applications. Instead, such commonality could serve as hints
for future proposals of automated detection or repair approaches toward these issues in DL
applications.

[Distinctive APIMisuses]Because of the specification of Python code and the DL neural
network models, Incorrect parameter type,Incorrect parameter value, and Incorrect API
Call Sequence are the three kinds of distinctive API misuses for DL applications, which
significantly differ from that of traditional programs (e.g., Java programs Amann et al. 2018)
where incorrect parameter type/value misuse and incorrect API call sequence has not been
observed in past work.

Table 4 Statistics of the API misuses in MisuAPI

DL library API General third-party
library API

Inner Project API Total (ratio)

Incorrect parameter
type

15 8 7 30 (21.0%)

Incorrect parameter
value

6 15 3 24 (16.8%)

Missing condition 8 35 4 47 (32.9%)

Missing exception
handling

2 17 2 21 (14.7%)

Missing API call 16 0 2 18 (12.6%)

Incorrect API call
sequence

2 1 0 3 (2.1%)

Total (ratio) 49 (34.3%) 76 (53.1%) 18 (12.6%) 143 (100%)

123

45 Page 18 of 36 Empirical Software Engineering (2024) 29:45

The misuse of incorrect parameter value means that the parameter is of the correct type,
but has an incorrect value. The usage constraints for this subcategory are more related to the
internal code logic of the API, thus are always implicitly encoded in the API source code. In
the datasetMisuAPI, the incorrect parameter value results in 24 API misuses with incorrect
parameter, as shown in Table 4.

The misuse of incorrect parameter type denotes that the parameter passed to the misused
API is of incorrect type. The usage constraints for this subcategory are often explicitly
encoded in the API source code or documentation. Even though, there are still 30 API misuse
cases caused by the incorrect parameter type, as shown in Table 4. One straightforward
reason lies in Python programming language used by DL applications, as Python executes
type checking only at runtime, which fails to ensure the legality of the parameter type passed
to the API before execution and finally leads to the runtime error.

✍ ❛❛Finding 4: The distinctive incorrect parameter type and value take a dominant
proportion (i.e., (30+24)/143=37.8%) of API-usage element issues of API misuses in DL
applications. ❜❜

4.4 Dissecting API Misuses with Scope

In this section, we investigate where the misused APIs derive from according to the scope
category defined for API misuses in Section 4.2. The “Total (ratio)” row of Table 4 presents
the distribution of APImisuses in terms of the scope category.Most misusedAPIs are derived
from general third-party libraries that occupy 53.1% (=76/143) of all misused APIs. As the
specific scope ofmisusedAPIs,DL library presents a non-trivial percentage (34.3%=49/143)
for API misuses in DL applications. It also reminds that, DL application developers should
also pay attention to the invocation of APIs defined their inner-projects, which could lead to
API misuses.

✍ ❛❛Finding 5: General third-party library (53.1%) is the primary source of misused
APIs in DL applications. And it is notable that one out of three misused APIs in DL
applications is from the referenced DL libraries. ❜❜

Differences among the Three Scope Categories To analyze the potential relationship
among the three scope categories of API misuses, we first measure the commonality across
these categories by calculating Spearman correlation coefficient (i.e., Spearman’s ρ Zar,
2005). Spearman correlation coefficient is a statistical test used to indicate the direction
(positive or negative) of a relationship between two paired variables. Such coefficient is
also employed by prior studies involving bugs in deep learning-related applications Shen
et al. (2021). Specifically, we rigorously follow the guideline Zar (2005) to calculate the
Spearman’s ρ based on the rankings of the API-usage element issues for each scope category.

For the value of Spearman’s ρ ∈ [−1, 1], the higher absolute value (i.e., |ρ|) represents
a higher degree of commonality between the two scopes, otherwise, a lower degree of com-
monality.

The correlation among three scope categories is presented in Fig. 12. The DL library API
misuses show a weak correlation (i.e., 0.15) with the general third-party library API misuses,
which indicates a low commonality on the API-usage element of API misuses between the
two categories. Nevertheless, the inner-project API misuses are a relatively high correlative
with that of DL library API misuses (i.e., 0.76) and general third-party library API misuses

123

Page 19 of 36 45Empirical Software Engineering (2024) 29:45

Fig. 12 Correlation among each
pair of scopes, as indicated by
Spearman’s ρ score. DL, General
and Inner represent “DL library
API”, “General third-party
library API” and “Inner-project
API”, respectively

1.00

0.15 1.00

0.76 0.72 1.00

0 0.5 1

General

Inner

DL General

Inner

DL

(i.e., 0.72). Itmight result from the common truth that the inner-project code is a kind of bridge
connecting the DL libraries and general third-party libraries to develop the DL application.

Looking at the number of misused APIs caused by incorrect parameter type and incor-
rect parameter value, The DL Library API category includes 15 incorrect type cases and
6 incorrect value cases. In contrast, the General Third-party library API category includes
8 incorrect type cases and 15 incorrect value cases. When comparing with the usages of
General Third-party library APIs8, DL library APIs often operate on parameters with more
complex data structures (e.g., Tensors or Arrays) that are used for building learning models.
Therefore, the misused parameter types in DL library API misuses are higher than the mis-
used parameter values. Additionally, as stated by Dilhara et al. (2021), DL libraries are more
frequently updated than general traditional ones, which leads to the fast evolution of APIs
and their documentation in DL libraries. This could eventually result in developers cannot
fully catch up with the changes related to the parameters of DL library APIs.

For the Missing API call caused API misuses, most of them (i.e., 16/18=89%) are from
the DL library API, but none of such misused API is from the General third-party libraries.
Although APIs from DL libraries and general third-party libraries are used for deep learning
tasks, the DL library APIs always play a pivotal role in constructing the learning model with
complex network structure, where the API call sequences are always used. So, the missing
API call caused API misuses mainly drive from the DL libraries, and the called DL library
APIs are often dependent on each other in the network. The missing API call could arise due
to developers’ misunderstanding/mistake when deploying these APIs. For example, training
the deep learning model always has a dependence on specific devices (e.g., CPUs or GPUs).
As shown in Fig. 13, the developer of the prettytensor application missed the call
of tf.device(’/cpu:0’):mandated by the tf.nn.embedding_lookup()9 that
finally led to a crash.

On the contrary of Missing API call, General third-party library API category contains
more API misuses of missing condition (i.e., 35, as shown in Table 4) and missing excep-
tion handling (i.e., 17, as shown in Table 4) than the DL library API category. APIs from
general third-party libraries mainly undertake data pre-processing tasks (e.g., loading data
from disks with json.load()) and some basic logic operating tasks that are always con-
nected to some specific conditions or exceptions. Table 5 presents 30 third-party libraries
that are the API providers of API misuses with respect to the 35 missing condition cases
and 17 missing exception handling cases. Specifically, the majority of third-party libraries

8 The Inner-Project API category contains seven incorrect type cases and three incorrect value cases, which
is consistent with DL Library API category, since the development of inner-project APIs of DL applications
is closer to the invocations of DL library APIs.
9 https://github.com/google/prettytensor/commit/01ee67d6e0cc5e9d6ae5f07045024a638564fe78

123

45 Page 20 of 36 Empirical Software Engineering (2024) 29:45

https://github.com/google/prettytensor/commit/01ee67d6e0cc5e9d6ae5f07045024a638564fe78

Fig. 13 Example of a misused DL library API that depends on specific devices (i.e., CPU) prettytensor (2021)

(i.e., 19/32=59.4%) involve in the data processing locally (e.g., json) or globally (e.g.,
requests). Note that such data processing often requires interactions with disks or inter-
net, various logic and exceptions should be carefully addressed. Thus, the missing condition
and exception handling caused API misuses are mainly from the general third-party libraries.
By listing the categories and libraries in Table 5, it might potentially remind researchers or
developers to pay attention to these libraries when the researcher is designing a new approach
or when developer is programming.

✍ ❛❛Finding 6: API misuses from the DL library APIs present a totally different distri-
bution from the General third-party library APIs. As a bridge between the DL library
APIs and the General third-party library APIs, the API misuses from inner-project APIs
present a relatively high correlation to both of them. In addition, because of the differ-
ences between the concrete developing tasks targeted by the DL library APIs and General
third-party library APIs, API misuses from the DL libraries are mainly caused by incor-
rect parameter types and missing API call, but API misuses from the General third-party
libraries are mainly caused by the incorrect parameter values, missing condition, and
missing exception handling.❜❜

4.5 Symptoms

In this section, we aim to investigate the symptoms caused byAPImisuses inDL applications.
To that end, we manually check the following sources: 1) code changes within the commit, 2)
commit message, 3) issue report, and 4) API documentation, to summarize the categories of
symptoms. We first collect clues from the bug fixing commit of fixing API misuses to verify
whether there is any code change or description that can provide the hints of the API misuse
for summarizing symptoms. We then check the associated issue report that is available in the
GitHub repository. Finally, we study the documentation of the misused APIs to confirm the

Table 5 General third-party
libraries that correspond to
missing conditions and missing
exception handling misuses

Categories General third-party libraries

Basic operations (4) collections, dict, getattr, string

Data processing (19) bentoml, cv2, docker, ffmpeg, fig,

google, http, io, json, librosa, os,

open, pickle, pycocotools, requests,

shutil, wave, zmq, msgpack

Others (7) numpy, pandas, pycuda, random,

scipy, threading, tqdm

123

Page 21 of 36 45Empirical Software Engineering (2024) 29:45

Table 6 Symptoms for each category of API misuses

DL library API General third-party library API Inner-project API

Error 39 75 18

Memory leak 3 1 0

Race condition 3 0 0

Low efficiency 4 0 0

summarized symptoms. Same to the identification of API misuses, summarizing symptoms
is also performed by four authors independently, where the disagreement is eliminated via
the group discussion. For the results of independent identification, the κ score ranges from
[0.81, 0.96], indicating the almost perfect agreement of the labelling process. Eventually, we
summarize four categories of symptoms as follows:

– Symptom 1: Error.Error means that the application terminates unexpectedly at runtime.
The error could directly result in a program crash, which often provides an error message
to indicate the exact information of the error. For example, the misused API in Fig. 9
raises RuntimeError with an error message “Illegal shape: None”.

– Symptom 2: Memory Leak. Memory leak is a typical vulnerability resulting from
the incorrect management of memory locations. The memory leak could lead to low
performance of the application or even crashes.One example inFig. 11 is that the incorrect
API call sequence of close() and join() leads to a memory leak.

– Symptom 3: Race Condition. Race condition often occurs when multiple processes or
threads depend on some shared state. Apart from program crashes, the race condition
could also result in serious security problems, e.g., privilege escalation. An example
resulting in this symptom is missing the API call for initializing TensorFlow variables10.

– Symptom 4: Low Efficiency. This symptom indicates that the time cost spent on exe-
cuting the application is much longer than the expectation of the developer or user. For
example, in Fig. 8 themissing call oftf.device()makes the applicationmuch slower.

As presented in Table 6, Error is the most common symptom for all API misuses in
DL applications, accounting for 92.3% (=132/143) of all symptoms. This indicates that the
majority of API misuses can result in program crashes. The rest 11 cases all fall into the
DL library API misuse, except for one memory leak caused by a general third-party API
misuse (i.e., the misuse in Fig. 11). There are six DL API misuses resulting in vulnerability-
related issues, including threememory leak cases and three race condition cases.Additionally,
DL library API misuses result in low efficiency issues that are not observed in symptoms
of other types of misuses. Figure 8 shows an example of a misused DL library API from
tf.contrib.slim module. If the dequeue node is not assigned to input_device,
the “Ignoring device specification /device:GPU:X for node ’clone_X/fifo_queue_Dequeue”’
message will be printed when running the program11, and the increased number of GPUs
even makes the program slower12.

10 https://github.com/horovod/horovod/commit/9420ef71c197b544f122a08ccb8db5491afa3548
11 https://github.com/tensorflow/models/pull/1480
12 https://github.com/tensorflow/models/issues/1390

123

45 Page 22 of 36 Empirical Software Engineering (2024) 29:45

https://github.com/horovod/horovod/commit/9420ef71c197b544f122a08ccb8db5491afa3548
https://github.com/tensorflow/models/pull/1480
https://github.com/tensorflow/models/issues/1390

Table 7 Information of the four
selected static analyzers

Name Version Stars Organization

mypy (2021) v0.812 10.5k Python

pyright (2021) v1.1.130 6.6k Microsoft

pyre-check (2021) v0.9.0 5.3k Facebook

pylint (2021) v2.7.4 3.3k PyCQA

✍ ❛❛Finding 7: Over 90% API misuses in DL applications will lead to program crashes,
and several API misuses could even result in vulnerable issues. It strongly calls for
practitioners’ attention to addressing API misuses in DL applications. ❜❜

5 Being Detectable

As presented in Section 4.5, API misuses could cause severe issues for DL applications. As
pointed out by Zhang et al. (2020), static program analysis tools, which often serve as a bug
finder, are promising tools to handle API misuses in DL applications. We thus investigate
to what extent API misuses in DL applications can be detected by state-of-the-art static
analyzers. Ideally, APImisuse detection tools exclusively for APImisuses in DL applications
should be used for evaluating whether these API misuses could be successfully detected. We
first searched for API misuse detectors that could be used in DL applications. We observed
that, although API misuse detection techniques have emerged in recent years with promising
results achieved on real-world programs (Nielebock et al. 2020; Amann et al. 2016; Wen
et al. 2019; Gulli and Sujit 2017), all of these detectors focus on Java API misuses. There
is no any API misuse detector targeting Python programs available from the community.
Furthermore, it could be a big challenge to apply the API misuse detector targeting Java to
Python programs due to syntactic incompatibilities and lack of analysis of dynamic features.
Therefore, we resort to state-of-the-art static analyzers for Python programs.

Following the common practice in selecting bug detection tools for specific type of bugs
(Kechagia et al. 2021;Eghbali andPradel 2020),we select four state-of-the-art static analyzers
(i.e., mypy 2021, pyright 2021, pyre-check 2021, pylint 2021) targeting python programs
from a list of 29 static analyzers SAST (2021), according to the stargazers count of each
analyzer in GitHub. Table 7 shows the basic information of the four selected static analyzers
that are well-maintained by well-known organizations or big companies such as Microsoft
and Facebook.

Specifically, the pipeline of these static analyzers can be summarized as follows:

1. Parsing: The tool parses the Python code into an abstract syntax tree (AST) that represents
the structure of the code.

2. Analysis: The tool analyzes the code to identify potential issues and violations of coding
standards. This may include type checking, metrics analysis, syntax checking, and other
checks depending on the tool.

3. Reporting: The tool generates a report that lists any errors orwarnings it found in the code.
The report may include details about the location of the issue in the code, a description
of the issue, and suggestions for how to fix the issue.

The exact details of the pipeline will vary depending on the tool and the specific configu-
ration used.

123

Page 23 of 36 45Empirical Software Engineering (2024) 29:45

Table 8 The exact syntax issue of API misuses detected by static analyzers

mypy pylint pyre-check pyright

Incorrect parameter type 0 2 0 2

Incorrect parameter value 0 0 0 4

In our experiment, we configure and run the four analyzers based on their official doc-
umentation. Specifically, the input of the analyzers is the Python source file that is to be
analyzed, and the output is the report of a specific analyzer. The report records the possible
issue detected by the analyzer.We thenmanually check the output of these analyzers to verify
if the API misuses can be detected.

Table 8 presents the detected results of the four static analyzers. The numbers in Table 8
means the number of the exact API-usage element issue of API misuse that a static analyzer
could detect. Recall that the incorrect parameter type and value account for 37.8% (=54/143)
of all 143 API misuses. Only two analyzers (i.e., pylint and pyright) reported the six true
positives, while the others failed to detect any API misuses and provided many unrelated
warning messages. The six detected API misuses include two incorrect parameter types of
inner-project API misuses (i.e., pylint and pyright detected the same two cases) and four
incorrect parameter values of general third-party library API misuses. Specifically, all four
detected incorrect parameter value misuses are related to the pickle.load() API that is
from the Python standard library Python (2021), one of them is shown in Fig. 14. Specifically,
in Fig. 14, the buggy version has the statement classifier = pickle.load(open(path)), which
will pass the incorrect value “r” to open()API and return a “file” object that pickle.load() could
not deal with. Themain reason is pickle.load()must require an “IO[bytes]” parameter instead
of “file” object. Thus, the fix contains a statement classifier = pickle.load(open(path, ‘rb’))
that will pass the correct value “rb” to open() API, and the patch satisfies the requirements
of pickle.load().

The detection results indicate a limited ability of state-of-the-art static analyzers to detect
API misuses (i.e., 137/143=95.8% misused APIs cannot be detected by them) in DL appli-
cations. In particular, for API misuses from DL libraries, none of them is detected. This
is because the analyzers at present are only able to parse the usage constraints related to
parameters of a small fraction of APIs defined inside the project or provided by the Python
standard library. They fail to mine more complicated usage constraints related to the rest four
API-usage element issues.

Furthermore, the automated repair of API misuse in DL applications is the next step
of the research pipeline, which requires domain-specific knowledge. We observe a notable
absence of efforts specifically directed towards identifying and rectifying API misuse in DL
applications. We are confident that the open-source dataset we have created and the analysis

Fig. 14 The misuse of pickle.load API detected by pyright. The report of Pyright: Argument of type “Tex-
tIOWrapper” cannot be assigned to parameter “file” of type “IO[bytes]”

123

45 Page 24 of 36 Empirical Software Engineering (2024) 29:45

we have undertaken for API misuse in DL applications could serve as valuable resources to
support future research in this area.

✍ ❛❛Finding 8: Lacking specific API misuse detecting tools for DL applications, over
90% API misuses cannot be detected by the state-of-the-art static analyzers of Python
programs. In particular, none of the misused APIs from the DL libraries can be detected.
❜❜

6 Discussion

6.1 Implications

We discuss the implications of our study for future research directions related to API misuses
in DL applications.

With Findings 1-2, we highlighted that the literature not only lacks consistent classifi-
cation criteria for API misuses in DL applications, but also faces data availability issues to
support extensive studies related to API misuses in DL applications. We have now addressed
these challenges by providing clear identification rules for API misuses in DL applications,
as well as a curated dataset. Our rules and dataset are expected to spark renewed interest and
research activity in the area of API misuse in DL applications by providing a systematic and
robust analysis. By utilizing our rules and real-world dataset, researchers can build upon our
work to develop more effective and efficient techniques for addressing the challenges of API
misuse in DL applications.

Findings 3-4 highlight three new API-usage element-related API misuses in DL appli-
cations that are not observed in traditional applications. Incorrect parameter type, Incorrect
parameter value, and incorrect API call sequences account for 39.9% of API misuses in
the collected samples. Future automated localization and repair approaches, by focusing on
these cases, could alleviate a large proportion of developer burden.

Findings 5-6 suggest that DL libraries and general-purpose libraries should be dealt with
differently. Indeed, the former provides functionalities related to DL specific tasks (e.g., ini-
tialization and parameterization of complex network models) while the latter serves for more
trivial functionalities in data pre-processing, metric computation, common operations, etc.
Therefore themisuse types are different, requiring specializeddetection and repair approaches
for each.

Finding 7 insists on the consequences of API misuses in DL applications. By highlighting
that API misuses will likely make the programs crash or even introduce vulnerabilities (e.g.,
memory leaks and race conditions), we suggest that the community consider API misuses as
an important category of bugs to address with automated approaches.

Finding 8 shows that over 90% API misuse cannot be detected by the state-of-the-art
static analyzers of Python programs. Python is a kind of dynamic programming language,
which makes it difficult to analyze statically. Besides, there are two other possible reasons.
The first is that the existing analyzers are not advanced enough to handle the inherent features
of Python. The second is the domain-specific knowledge of API misuses of DL applications
are not included in the analyzers. Therefore, it urgently calls formore research efforts towards
more advanced analyzers and addressing API misuses in DL applications.

123

Page 25 of 36 45Empirical Software Engineering (2024) 29:45

6.2 Threats to Validity

When labeling the APImisuses, four authors of our paper independently labelled each of API
misuses. For the inconsistent labels, we discuss until an agreement is achieved. Although the
settings are conducted in prior works (Humbatova et al. 2020; Islam et al. 2019a), there may
still exist potential efficiency problems. Independent raters withmoderator and reconciliation
should be further effective and efficient.

To the best of our knowledge, MisuAPI is the largest dataset of API misuses among
existing publicly available datasets of API misuses (Zhang et al. 2018; Humbatova et al.
2020; Amann et al. 2016, 2018), be it for traditional (e.g., MuBench with 77 misuses from
33 projects Amann et al. 2016) or DL applications (i.e., the datasets studied in Table 1).
However, our dataset of 143 API misuses may not be representative in the following three
aspects.

First, MisuAPI may not be representative is that we only consider the code changes in
Python file (i.e., the filename ends with ‘.py’). Some of the DL applications in GitHub may
be written in Python notebooks, which is not included in our work. It could be beneficial
to include various kinds of source in the future. Furthermore, we check “import tensor-
flow” statement in our project filtering out process, which does not guarantee the exclusion
of tutorial projects. Second, MisuAPI is originated from only GitHub. However, there are
numerous alternative data sources available for collecting instances of API misuse, such as
StackOverflow. If API misuse from additional sources were included in the dataset, it could
lead to changes in the data distribution and potentially result in different characteristics of
API misuse. This represents a latent threat to the dataset’s integrity. We plan to include it as a
prospective avenue for our future work. In order to include more API misuse from different
sources, we also analyze the API bugs from the existing datatset collected by Islam et al.
(2020). Eventually, we identified only one API misuse from 60 API bugs in the dataset13,
which highlights the significance of MisuAPI. From a statistical perspective, this identified
API misuse will not significantly impact the distribution of our dataset, nor will it affect the
characteristics of API misuse in DL applications. Thus, we did not merge it into our dataset.
Third, the subject selection in Section 3.3 is for selecting the top-rated DL projects and may
fail to avoid low-quality projects. We mitigated this threat by manually identifying the API
misuse commits as described in Section 3.5.

Due to the time-consuming process of manual identification and untangling, MisuAPI
does not contain the latest API misuse bugs. While many popular real-world bug datasets
are typically valued by researchers due to their high-quality bugs (i.e., carefully curated bugs
that eliminate unrelated code changes as we also did in Section 3.5Manual Identification and
Untangling), the inclusion of the latest bug may not be a major factor impacting the quality of
a dataset. For example, one of the most popular datasets for automated program repair (i.e.,
Defects4J Just et al. 2014), which was constructed in 2014 and has been used as a benchmark
by more than 60 newly proposed APR tools, consists of real-world bugs that appeared in as
early as 2007. We believe the current version of our dataset, which is also carefully curated
as Defects4J ever did, could bring benefits to the community.

Another threat may be introduced through the manual validation of API misuses during
the literature review in Section 2 and dataset construction in Section 3. Tomitigate this threat,
four authors of this paper independently performed the validation and iteratively refined the

13 The identification results can be found at: https://doi.org/10.5281/zenodo.8302351. The identification
results include whether each API bug is an API misuse and the reason for it being or not being an API
misuse.

123

45 Page 26 of 36 Empirical Software Engineering (2024) 29:45

https://doi.org/10.5281/zenodo.8302351

results until a consensuswas reached. All labels and associated annotations aremade publicly
available DehengYang (2023).

The four static analyzers selected for detectingAPImisuses inMisuAPImay not represent
all static analyzers, which also poses a threat to this paper. We notice that more and more
researchers have devoted effort to developing automated bug detection and repair techniques
(Wardat et al. 2022; Cao et al. 2022;Wardat et al. 2021; Yan et al. 2021; Yu et al. 2021; Usman
et al. 2021) for bugs in DL applications, but there is still no such work focusing on detecting
and repairing API misuse in DL applications. The open-source dataset we constructed and
the analysis we conducted for API misuse in DL applications could serve as a reference point
for future related research.

7 RelatedWork

7.1 Study on Bugs in DL Applications

Recently, a set of empirical studies has emerged in top venues to reveal the bug characteristics
and corresponding debugging challenges. Zhang et al. (2018) studied deep learning appli-
cations built on top of TensorFlow and collected program bugs related to TensorFlow from
StackOverflow QA pages and GitHub projects. Islam et al. (2019a) expanded the studied DL
libraries by including Caffe, Keras, Theano, and Torch. Humbatova et al. (2020) introduced
a large taxonomy of faults in DL systems. Islam et al. (2020) studied the 415 repairs and
found that deep neural network bug fix patterns are distinctive compared to traditional bug
fix patterns. Zhang et al. (2020) performed the first comprehensive study on program failures
of DL jobs. The main difference between these studies and our work is that they focus on the
breadth of research by covering all bug categories in DL learning applications while we aim
to explore one important category (i.e., API misuse) in depth.

7.2 Study on API Misuses in DL Applications

There have been several studies that partially or completely involve API misuses, as listed in
Table 1. These related work allow us to stand on the shoulders of giants while focusing on
creating a curated dataset and acquiring new findings for API misuses in DL applications.

Among the studies that partially investigate API misuses, Zhang et al. (2018) studied 175
bugs in TensorFlow applications collected from GitHub and Stack Overflow, where they
identified 33 API misuses in total.

Humbatova et al. (2020) present a taxonomy of bugs in DL-specific bugs via a structured
interview with 20 researchers and practitioners. Unlike the work of Zhang et al. (2018), they
exclude all generic (i.e., non-DL specific) bugs in DL applications before building the taxon-
omy, and identify API misuse as a leaf category of the whole taxonomy. Vélez et al. (2022)
examined code patches and bug reports of tf.function, and found that hybridization
approach could lead to API misuses. The work of Vélez et al. (2022) is not an exclusive
study targeting API misuse. It focuses on covering all types of bugs of tf.function,
including API misuse, API incompatibility, numerical errors, etc. Compared with our work,
it reveals some API misuses but is limited to a single API (i.e., tf.function), while our
work does not hold such constraint.We present a two-dimensional taxonomy for APImisuses
in DL applications, and analyze the characteristics of API misuses in terms of the syntax,
API-usage element issues, scopes, and symptoms.

123

Page 27 of 36 45Empirical Software Engineering (2024) 29:45

Islam et al. (2019b) manually analyzed 3,243 highly-rated Q&A posts from Stack Over-
flow and reported that API misuses occur across all stages of machine learning pipelines.
Similarly, Zhang et al. (2019) manually studied 715 Q&A posts from Stack Overflow, where
they characterized API misuse as one of the five main root causes of issues in DL appli-
cations. In addition, Islam et al. (2019a) performed a comprehensive study of bugs in DL
applications, and they identified that API misuse is one of the ten root causes of bugs in DL
applications.

Chen et al. (2021) studied 304 deployment faults from Stack Overflow and GitHub and
reported fixing the API misuse as one of 13 fix strategies for different fault symptoms. Zhang
et al. (2020) performed a comprehensive study on program failures of deep learning jobs that
run on a remote and shared platform (i.e., Philly from Microsoft), and they revealed a large
proportion of API misuses (i.e., 138 API misuses out of 668 DL specific bugs).

The major difference between these studies and our work is that our work is inspired by
these studies but further proposes new infrastructure and obtains new findings. Specifically,
we notice that although API misuses are frequently mentioned in these studies but are seldom
investigated in an in-depthmanner. Therefore,we construct the first publicly available dataset,
namelyMisuAPI, exclusively for API misuses in DL applications. Then, we propose a two-
dimensional taxonomy to further characterizeAPImisuses inDL applications. Different from
the tree-based taxonomyofHumbatova et al. (2020), to obtain a comprehensive understanding
of API misuses in DL applications, our taxonomy focuses fully on API misuses rather than
all bugs in DL applications. In addition, our characterization analysis performed based on
MisuAPI further reveals the symptoms of each category and whether they could be detected
by existing static analyzers.

Note that we do not include StackOverflow for the following reasons: (1) Selection bias:
The questions and answers on StackOverflow often only reflect the views and experiences
of some people. (2) Quality: Because StackOverflow allows anyone to post questions and
answers, there are questions and answers of varying quality. This can lead to noisy, erroneous,
or ambiguous information in the dataset. (3) Context: The questions and answers on Stack-
Overflow are usually posed for specific situations, but these situational information may be
missing from the dataset. This can lead to difficulties in accurately understanding questions
and answering them.

Among the studies that completely investigate API misuses, Wan et al. (2021) focused on
the API misuses that reside in the machine learning cloud services. They manually analyzed
360 open-source GitHub projects that use Google Cloud or AWS APIs and reported that
over 69% of applications suffer from API misuses in their latest version. In addition, Wu
et al. (2021) analyzed a specific type of API misuse (i.e., crashing tensor shape faults)
in TensorFlow and Keras applications. and they further constructed a dataset of 146 buggy
programswith crashing tensor shape faults. As compared to the two studies, our work focuses
on a different scope (i.e., API misuses in popular TensorFlow dependent applications) rather
than machine learning cloud API misuse or a specific type of API misuses. Thus, this leads
to findings and conclusions in the paper that differ significantly from the two studies.

8 Conclusion

We focus on demystifyingAPImisuses inDL applications, whose study faces four challenges
related to the classification of API misuses, the lack of dataset in the literature, the limited
understanding of API misuses characteristics and support for their detection. We therefore

123

45 Page 28 of 36 Empirical Software Engineering (2024) 29:45

start by addressing the fundamental but unanswered question about the definition of API
misuse as well as how to identify them in DL applications. Then we construct a curated
dataset from real-world popular DL projects and share it with the community. Subsequently,
building on the dataset, we perform an in-depth analysis to investigate the characteristics of
API misuses in DL applications in terms of API-usage element issues, scopes and symptoms.
Finally, we measure the detectability of these API misuses with four state-of-the-art static
analyzers. Through these analyses, we provide actionable findings that could be further
leveraged byboth practitioners to avoid theAPImisuses and researchers to propose automated
approaches for these misuses.

In future work, we plan to develop a fully automated API misuse detection and repair
tool based on the distilled findings in our work. In addition, we plan to investigate new API
misuses in more DL libraries (e.g., PyTorch Paszke et al. 2017, Keras Gulli and Sujit 2017,
Caffe Jia et al. 2014, Theano Al-Rfou et al. 2016) to present a more comprehensive view of
API misuses in DL libraries.

Acknowledgements This research was partially supported by the National Natural Science Foundation of
China (Nos. 62172214, 62272072), theNatural ScienceFoundation of JiangsuProvince,China (BK20210279),
and the Major Key Projectof PCL (No. PCL2021A06).

Data Availability For the sake of Open Science, we make the replication package with source code and the
curated dataset MisuAPI publicly available at: https://zenodo.org/record/7684952

Declarations

Conflict of interests/Competing interests The authors have no relevant financial or non-financial interests to
disclose.

Ethics approval No ethics approval was required for this paper.

References

A curated list of static analysis (sast) tools for all programming languages. https://github.com/analysis-tools-
dev/static-analysis#python. Accessed June 2021

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al (2016)
Tensorflow: a system for large-scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), p 265–283

Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bastien F, Bayer J, Belikov A, The
TheanoDevelopment Teamet al (2016)Theano: a python framework for fast computation ofmathematical
expressions. arXiv:1605.02688

Amann S, Nguyen HA, Nadi S, Nguyen TN, Mezini M (2018) A systematic evaluation of static api-misuse
detectors. IEEE Trans Softw Eng 45(12):1170–1188

Amann S, Nadi S, NguyenHA,Nguyen TN,MeziniM (2016)Mubench: a benchmark for api-misuse detectors.
In Proceedings of the 13th international conference on mining software repositories, pp 464–467

Amann S, Nguyen HA, Nadi S, Nguyen TN, Mezini M (2019) Investigating next steps in static api-misuse
detection. In 2019 IEEE/ACM 16th international conference on mining software repositories (MSR),
pp 265–275. IEEE

Artifact page of our study (2023). https://github.com/DehengYang/MisuAPI
Bonifacio R, Krüger S, Narasimhan K, Bodden E, Mezini M (2021) Dealing with variability in api misuse

specification. arXiv:2105.04950
Cambronero J, Li H, Kim S, Sen K, Chandra S (2019) When deep learning met code search. In Proceedings

of the 2019 27th ACM joint meeting on European software engineering conference and symposium on
the foundations of software engineering, pp 964–974

123

Page 29 of 36 45Empirical Software Engineering (2024) 29:45

https://zenodo.org/record/7684952
https://github.com/analysis-tools-dev/static-analysis#python
https://github.com/analysis-tools-dev/static-analysis#python
http://arxiv.org/abs/1605.02688
https://github.com/DehengYang/MisuAPI
http://arxiv.org/abs/2105.04950

Cao J, Li M, Chen X, Wen M, Tian Y, Wu B, Cheung S-C (2022) Deepfd: automated fault diagnosis and
localization for deep learning programs. In: Proceedings of the 44th international conference on software
engineering, pp 573–585

Casalnuovo C, Suchak Y, Ray B, Rubio-González C (2017) Gitcproc: a tool for processing and classifying
github commits. In: Proceedings of the 26thACMSIGSOFT international symposium on software testing
and analysis, pp 396–399

CEO Nvidia (2023) Software is eating the world, but AI is going to eat software. T. Simonite
Chen Z, Yao H, Lou Y, Cao Y, Liu Y, Wang H, Liu X (2021) An empirical study on deployment faults of

deep learning based mobile applications. In: 2021 IEEE/ACM 43rd international conference on software
engineering (ICSE), pp 674–685. IEEE

Dilhara M, Ketkar A, Dig D (2021) Understanding software-2.0: a study of machine learning library usage
and evolution. ACM Trans Soft Eng Methodol (TOSEM) 30(4):1–42

Eghbali A, Pradel M (2020) No strings attached: an empirical study of string-related software bugs. In: 2020
35th IEEE/ACM international conference on automated software engineering (ASE), pp 956–967. IEEE

Example of amissing api withmissing exception handling. https://github.com/tensorpack/tensorpack/commit/
132dcccd34a831a01e4fcdbd32f869b36f04537e. Accessed June 2021

Example of a misused api with incorrect api call sequence. https://github.com/deezer/spleeter/commit/
55723cfa6296388ea1f584e2591f1d89e4c0afb6. Accessed June 2021

Example of a misused api with missing api call. https://github.com/tensorflow/models/commit/
001a260214ba34f36e149bbd24f7f5d6a6634500. Accessed June 2021

Example of a misused api with missing condition. https://github.com/tensorpack/tensorpack/commit/
ae84b52ad5402ab1716e0f1e9790ce1da9d706d1. Accessed June 2021

Example of a misused dl library api depending on the specific device. https://github.com/google/prettytensor/
commit/01ee67d6e0cc5e9d6ae5f07045024a638564fe78. Accessed June 2021

Example of an incorrect parameter value. https://github.com/google/tf-quant-finance/commit/
258844720a9bccd326c7b33735f7f81c2d483630. Accessed June 2021

Falleri J-R, Morandat F, Blanc X, Martinez M, Monperrus M (2014) Fine-grained and accurate source code
differencing. In: Proceedings of the 29th ACM/IEEE international conference on automated software
engineering, pp 313–324

Forward A, Lethbridge TC (2008) A taxonomy of software types to facilitate search and evidence-based
software engineering. In: Proceedings of the 2008 conference of the center for advanced studies on
collaborative research: meeting of minds, pp 179–191

Github api. https://docs.github.com/en/rest/reference/search. Accessed June 2021
Gulli A, Pal S (2017) Deep learning with Keras. Packt Publishing Ltd
Gu Z,Wu J, Liu J, ZhouM,GuM (2019) An empirical study on api-misuse bugs in open-source c programs. In:

2019 IEEE 43rd annual computer software and applications conference (COMPSAC), vol 1, pp 11–20.
IEEE

Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020) Taxonomy of real faults in
deep learning systems. In: Proceedings of the ACM/IEEE 42nd international conference on software
engineering, pp 1110–1121

Institute of Electrical and Electronics Engineers (1987) IEEE Standard Taxonomy for Software Engineering
Standards

Islam MdJ (2020) Towards understanding the challenges faced by machine learning software developers and
enabling automated solutions

IslamMdJ, Nguyen HA, Pan R, Rajan H (2019)What do developers ask about ml libraries? a large-scale study
using stack overflow. arXiv:1906.11940

Islam MdJ, Nguyen G, Pan R, Rajan H (2019) A comprehensive study on deep learning bug characteristics.
In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering, pp 510–520

IslamMdJ, Pan R, Nguyen G, Rajan H (2020) Repairing deep neural networks: fix patterns and challenges. In:
2020 IEEE/ACM 42nd international conference on software engineering (ICSE), pp 1135–1146. IEEE

Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe:
convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international
conference on multimedia, pp 675–678

Just R, Jalali D, Ernst MD (2014) Defects4j: a database of existing faults to enable controlled testing studies
for java programs. In: Proceedings of the 2014 international symposium on software testing and analysis,
pp 437–440

Kechagia M, Devroey X, Panichella A, Gousios G, van Deursen A (2019) Effective and efficient api misuse
detection via exception propagation and search-based testing. In: Proceedings of the 28thACMSIGSOFT
international symposium on software testing and analysis, pp 192–203

123

45 Page 30 of 36 Empirical Software Engineering (2024) 29:45

https://github.com/tensorpack/tensorpack/commit/132dcccd34a831a01e4fcdbd32f869b36f04537e
https://github.com/tensorpack/tensorpack/commit/132dcccd34a831a01e4fcdbd32f869b36f04537e
https://github.com/deezer/spleeter/commit/55723cfa6296388ea1f584e2591f1d89e4c0afb6
https://github.com/deezer/spleeter/commit/55723cfa6296388ea1f584e2591f1d89e4c0afb6
https://github.com/tensorflow/models/commit/001a260214ba34f36e149bbd24f7f5d6a6634500
https://github.com/tensorflow/models/commit/001a260214ba34f36e149bbd24f7f5d6a6634500
https://github.com/tensorpack/tensorpack/commit/ae84b52ad5402ab1716e0f1e9790ce1da9d706d1
https://github.com/tensorpack/tensorpack/commit/ae84b52ad5402ab1716e0f1e9790ce1da9d706d1
https://github.com/google/prettytensor/commit/01ee67d6e0cc5e9d6ae5f07045024a638564fe78
https://github.com/google/prettytensor/commit/01ee67d6e0cc5e9d6ae5f07045024a638564fe78
https://github.com/google/tf-quant-finance/commit/258844720a9bccd326c7b33735f7f81c2d483630
https://github.com/google/tf-quant-finance/commit/258844720a9bccd326c7b33735f7f81c2d483630
https://docs.github.com/en/rest/reference/search
http://arxiv.org/abs/1906.11940

Kechagia M, Mechtaev S, Sarro F, Harman M (2021) Evaluating automatic program repair capabilities to
repair api misuses. IEEE Trans Softw Eng

Kuutti S, Bowden R, Jin Y, Barber P, Fallah S (2020) A survey of deep learning applications to autonomous
vehicle control. IEEE Trans Intell Trans Syst 22(2):712–733

Kwasnik BH (1999) The role of classification in knowledge representation and discovery
Lamothe M, Guéhéneuc Y-G, Shang W (2021) A systematic review of api evolution literature. ACM Comput

Surv (CSUR) 54(8):1–36
LamotheM, Li H, ShangW (2021) Assisting example-based api misuse detection via complementary artificial

examples. IEEE Trans Softw Eng
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics,

pp 159–174
Li X, Jiang J, Benton S, Xiong Y, Zhang L (2021) A large-scale study on api misuses in the wild. In: 2021

14th IEEE conference on software testing, verification and validation (ICST), pp 241–252. IEEE
Liu Y, Liu G, Zhang Q (2019) Deep learning and medical diagnosis. Lancet 394(10210):1709–1710
Liu K, KimD, Koyuncu A, Li L, Bissyandé TF, Le Traon Y (2018) A closer look at real-world patches. In 2018

IEEE International Conference on Software Maintenance and Evolution (ICSME), p 275–286. IEEE
Mama R (2021) Example of a misused api with incorrect parameter. https://github.com/Rayhane-mamah/

Tacotron-2/commit/0ae2901b428afd4127272154b71705e2799a484d. Accessed June 2021
Mamah R (2023) The example of inner api misuse in dl application. https://github.com/Rayhane-mamah/

Tacotron-2/commit/fb5564b7584ae0dc62ffecaa89d463ff24a3c251. Accessed Aug 2023
McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med 22(3):276–282
Meijer E (2018) Behind every great deep learning framework is an even greater programming languages

concept (keynote). In: Proceedings of the 201826thACMjointmeeting onEuropean software engineering
conference and symposium on the foundations of software engineering, pp 1–1

mypy. https://github.com/python/mypy. Accessed June 2021
Nielebock S, Heumüller R, Schott KM, Ortmeier F (2020) Guided pattern mining for api misuse detection by

change-based code analysis. arXiv:2008.00277
Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017)

Automatic differentiation in pytorch
pylint. https://github.com/PyCQA/pylint. Accessed June 2021
pyre-check. https://github.com/facebook/pyre-check. Accessed June 2021
pyright. https://github.com/microsoft/pyright/. Accessed June 2021
Python standard library. https://docs.python.org/3/library/. Accessed June 2021
Ren X, Ye X, Xing Z, Xia X, Xu X, Zhu L, Sun J (2020) Api-misuse detection driven by fine-grained api-

constraint knowledge graph. In: 2020 35th IEEE/ACM international conference on automated software
engineering (ASE), pp 461–472. IEEE

Scalabrino S, Bavota G, Linares-Vásquez M, Lanza M, Oliveto R (2019) Data-driven solutions to detect api
compatibility issues in android: an empirical study. In: 2019 IEEE/ACM 16th international conference
on mining software repositories (MSR), pp 288–298. IEEE

Shen Q, Ma H, Chen J, Tian Y, Cheung S-C, Chen X (2021) A comprehensive study of deep learning compiler
bugs. In: Proceedings of the 29th ACM joint meeting on European software engineering conference and
symposium on the foundations of software engineering, pp 968–980

Šmite D, Wohlin C, Galvin, a Z, Prikladnicki R (2014) An empirically based terminology and taxonomy for
global software engineering. Empir Softw Eng 19(1):105–153

Svyatkovskiy A, Deng SK, Fu S, Sundaresan N (2020) Intellicode compose: code generation using trans-
former. In: Proceedings of the 28th ACM joint meeting on European software engineering conference
and symposium on the foundations of software engineering, pp 1433–1443

Tensorflow repositories in githubs. https://github.com/search?q=tensorflow&type=. Accessed June 2021
The manual verification results for api bugs provided by Islam et al. https://zenodo.org/record/8302351.

Accessed Aug 2023
Unterkalmsteiner M, Feldt R, Gorschek T (2014) A taxonomy for requirements engineering and software test

alignment. ACM Trans Softw Engi Methodol (TOSEM) 23(2):1–38
Usman M, Britto R, Börstler J, Mendes E (2017) Taxonomies in software engineering: a systematic mapping

study and a revised taxonomy development method. Inf Softw Technol 85:43–59
Usman M, Gopinath D, Sun Y, Noller Y, Păsăreanu CS (2021) Nn repair: constraint-based repair of neural

network classifiers. In: Computer aided verification: 33rd international conference, CAV 2021, Virtual
Event, July 20–23, 2021, Proceedings, Part I 33, pp 3–25. Springer

Vélez TC,Khatchadourian R, BagherzadehM,RajaA (2022) Challenges inmigrating imperative deep learning
programs to graph execution: an empirical study. In: Proceedings of the 19th international conference on
mining software repositories, pp 469–481

123

Page 31 of 36 45Empirical Software Engineering (2024) 29:45

https://github.com/Rayhane-mamah/Tacotron-2/commit/0ae2901b428afd4127272154b71705e2799a484d
https://github.com/Rayhane-mamah/Tacotron-2/commit/0ae2901b428afd4127272154b71705e2799a484d
https://github.com/Rayhane-mamah/Tacotron-2/commit/fb5564b7584ae0dc62ffecaa89d463ff24a3c251
https://github.com/Rayhane-mamah/Tacotron-2/commit/fb5564b7584ae0dc62ffecaa89d463ff24a3c251
https://github.com/python/mypy
http://arxiv.org/abs/2008.00277
https://github.com/PyCQA/pylint
https://github.com/facebook/pyre-check
https://github.com/microsoft/pyright/
https://docs.python.org/3/library/
https://github.com/search?q=tensorflow&type=
https://zenodo.org/record/8302351

Wan C, Liu S, Hoffmann H, Maire M, Lu S (2021) Are machine learning cloud apis used correctly? In: 2021
IEEE/ACM 43rd international conference on software engineering (ICSE), pp 125–137. IEEE

WardatM, CruzBD, LeW,RajanH (2022)Deepdiagnosis: automatically diagnosing faults and recommending
actionable fixes in deep learning programs. In: Proceedings of the 44th international conference on
software engineering, pp 561–572

WardatM, LeW,RajanH (2021)Deeplocalize: fault localization for deep neural networks. In 2021 IEEE/ACM
43rd international conference on software engineering (ICSE), p 251–262. IEEE

Wen M, Liu Y, Wu R, Xie X, Cheung S-C, Su Z (2019) Exposing library api misuses via mutation analysis.
In: 2019 IEEE/ACM 41st international conference on software engineering (ICSE), pp 866–877. IEEE

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Wu D, Shen B, Chen Y (2021) An empirical study on tensor shape faults in deep learning systems.
arXiv:2106.02887

YanM,Chen J, ZhangX, TanL,WangG,WangZ (2021) Exposing numerical bugs in deep learning via gradient
back-propagation. In: Proceedings of the 29th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering, pp 627–638

Yang Y, Xia X, Lo D, Grundy J (2020) A survey on deep learning for software engineering. arXiv:2011.14597
Yu B, Qi H, Guo Q, Juefei-Xu F, Xie X, Ma L, Zhao J (2021) Deeprepair: style-guided repairing for deep

neural networks in the real-world operational environment. IEEE Trans Reliab 71(4):1401–1416
Zar JH (2005) Spearman rank correlation. Encyclopedia of Biostatistics, 7
Zhang Y, Chen Y, Cheung S-C, Xiong Y, Zhang L (2018) An empirical study on tensorflow program bugs.

In: Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis,
pp 129–140

Zhang T, Gao C, Ma L, Lyu M, Kim M (2019) An empirical study of common challenges in developing deep
learning applications. In: 2019 IEEE 30th international symposium on software reliability engineering
(ISSRE), pp 104–115. IEEE

Zhang T, Upadhyaya G, Reinhardt A, Rajan H, Kim M (2018) Are code examples on an online q&a forum
reliable? a study of api misuse on stack overflow. In: Proceedings of the 40th international conference
on software engineering, pp 886–896

Zhang T, Upadhyaya G, Reinhardt A, Rajan H, KimM (2018) Are online code examples reliable? an empirical
study of apimisuse on stack overflow. In: International conference on software engineering (ICSE), vol 10

Zhang R, Xiao W, Zhang H, Liu Y, Lin H, Yang M (2020) An empirical study on program failures of deep
learning jobs. In: Proceedings of the ACM/IEEE 42nd international conference on software engineering,
pp 1159–1170

Zhong H, Su Z (2015) An empirical study on real bug fixes. In: 2015 IEEE/ACM 37th IEEE international
conference on software engineering, vol 1, pp 913–923. IEEE

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

45 Page 32 of 36 Empirical Software Engineering (2024) 29:45

http://arxiv.org/abs/2106.02887
http://arxiv.org/abs/2011.14597

Deheng Yang is currently a Ph.D. student at National University of
Defense Technology, under the supervision of Dr. Xiaoguang Mao.
He received the BA in computer science and technology from the
National University of Defense Technology. His research interests
include fault localization, automated program repair, etc.

Kui Liu is a research scientist in the software engineering applica-
tion technology lab at Huawei, China. His research interests focus
on Intelligent Software Engineering, including software analysis, soft-
ware testing, code review, code generation and comprehension.

Yan Lei received the BA, MA and Ph.D. degrees in computer science
and technology, all from the National University of Defense Technol-
ogy, China. He is an associate professor at the School of Big Data &
Software Engineering in Chongqing University, China. His research
interests include fault localization, program repair, program slicing,
etc.

123

Page 33 of 36 45Empirical Software Engineering (2024) 29:45

Li Li is a Professor of Software Engineering at Beihang University,
China. Before that, he was a Senior Lecturer and ARC DECRA Fel-
low at Monash University, Australia. He received his PhD degree
in computer science from the University of Luxembourg in 2016.
Li has awarded the MSR 2023 Ric Holt Early Career Achievement
Award and has been ranked as the top-5 most impactful early-stage SE
researchers in the world by two continuous bibliometric assessments
of SE scholars concerning papers published from 2010 to 2017 and
from 2013 to 2020, respectively. He has published over 150 research
papers at prestigious conferences such as ICSE, ESEC/FSE, ASE,
ISSTA, POPL, PLDI, WWW, and prestigious journals such as ACM
TOSEM, IEEE TSE, TIFS, TDSC. His publications have received
multiple Best Paper Awards, including an ACM SIGPLAN Distin-
guished Paper Award in 2021, a Best Student Paper Award at The Web
Conference in 2020, an ACM SIGSOFT Distinguished Paper Award
in 2018, an MSR FOSS (Free, Open-Source Software) Impact Paper

Award in 2018, and a Best Paper Award at SANER-ERA 2016. He is an active member of the software
engineering and security community, serving as the Associate Editor for the ACM Computing Survey jour-
nal and reviewers for many top-tier conferences and journals such as ASE, ICSME, ISSRE, SANER, MSR,
TSE, TOSEM, TIFS, TDSC, TOPS, EMSE, JSS, IST, etc.

Huan Xie is a PhD student advised by Professor Yan Lei at Chongqing
University. He received his B.S. degree in software engineering from
Chongqing University. His research interests include software testing,
fault localization, and deep learning testing.

Chunyan Liu is a master’s student under the supervision of Professor
Yan Lei of Chongqing University. Her research interests include soft-
ware testing, fault localization, and deep learning testing.

123

45 Page 34 of 36 Empirical Software Engineering (2024) 29:45

Zhenyu Wang is a PhD candidate at the College of Computer Sci-
ence in Chongqing University. He received his bachelor’s degree in
School of Big Data and Software Engineering from Chongqing Uni-
versity in 2020. His research interests include reinforcement learning,
edge intelligence.

Xiaoguang Mao is a professor at College of Computer, National Uni-
versity of Defense Technology, China. His research interests include
high confidence software, software development methodology, soft-
ware assurance, software service engineering, etc.

Tegawendé F. Bissyandé is research scientist with the Interdisci-
plinary Center for Security, Reliability and Trust (SnT) at the Uni-
versity of Luxembourg. He holds a PhD in computer from the Uni-
versité de Bordeaux in 2013, and an engineering degree (MSc) from
ENSEIRB. His research interests are in debugging, including bug
localization and program repair, as well as code search, including code
clone detection and code classification.

123

Page 35 of 36 45Empirical Software Engineering (2024) 29:45

Authors and Affiliations

Deheng Yang1 · Kui Liu2 · Yan Lei3,4 · Li Li5 · Huan Xie3,4 · Chunyan Liu3,4 ·
Zhenyu Wang3 · Xiaoguang Mao1 · Tegawendé F. Bissyandé6,7

Deheng Yang
yangdeheng13@nudt.edu.cn

Kui Liu
brucekuiliu@gmail.com

Li Li
lilicoding@ieee.org

Huan Xie
huanxie@cqu.edu.cn

Chunyan Liu
chunyanliu@cqu.edu.cn

Zhenyu Wang
zhenyuwang@cqu.edu.cn

Xiaoguang Mao
xgmao@nudt.edu.cn

Tegawendé F. Bissyandé
tegawende.bissyande@uni.lu

1 College of Computer, National University of Defense Technology, Changsha, China
2 Huawei Software Engineering Application Technology Lab, Ningbo, China
3 School of Big Data and Software Engineering, Chongqing University, Chongqing, China
4 Peng Cheng Laboratory, ShenZhen, China
5 School of Big Data and Software Engineering, Chongqing University, Chongqing, China
6 Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg,

Luxembourg, Luxembourg
7 School of Software, Beihang University, Beijing, China

123

45 Page 36 of 36 Empirical Software Engineering (2024) 29:45

http://orcid.org/0000-0003-4504-6806

	Demystifying API misuses in deep learning applications
	Abstract
	1 Introduction
	2 On the Fundamentals of API Misuse
	2.1 Motivation
	2.2 Recalling API Misuse Definition
	2.3 Summarizing API Misuse Identification Rules
	2.4 Reviewing API Misuse of DL Applications in the Literature

	3 Dataset Curating
	3.1 Motivation
	3.2 Overview
	3.3 Selecting Subjects
	3.4 Collecting Commits Related to API Issues
	3.5 Manual Identification and Untangling

	4 Characteristics
	4.1 Motivation
	4.2 Taxonomy of Misused APIs in DL Applications
	4.3 Dissecting API Misuses with API-usage Element Issues
	4.4 Dissecting API Misuses with Scope
	4.5 Symptoms

	5 Being Detectable
	6 Discussion
	6.1 Implications
	6.2 Threats to Validity

	7 Related Work
	7.1 Study on Bugs in DL Applications
	7.2 Study on API Misuses in DL Applications

	8 Conclusion
	Acknowledgements
	References

