Mobile robots; additive manufacturing; path planning; artificial intelligence; industry 4,0
Abstract :
[en] Mobile Additive Manufacturing (MAM) systems are transforming large-scale fabrication across various industries, particularly in building and construction. This review explores recent advancements and ongoing challenges in deploying mobile robots within dynamic additive manufacturing (AM) environments. A primary focus is placed on mobile robots’ path planning and real-time navigation methods, identified as critical knowledge gaps that impact the accuracy of printing trajectories. AI-driven techniques, such as deep learning and reinforcement learning, are presented as promising solutions to these challenges, offering improvements in trajectory optimisation, obstacle avoidance, and multi-robot cooperation. However, significant obstacles remain, particularly in scaling up MAM operations while maintaining both precision and efficiency. This review provides analysis of the current state of mobile robotic AM, outlines potential pathways for future research, and underscores the alignment of these technologies with Industry 4.0 objectives, emphasizing the ongoing need for innovation to unlock the full potential of mobile robotics in large-scale manufacturing.
Precision for document type :
Review article
Disciplines :
Mechanical engineering
Author, co-author :
RASTEGARPANAH, Mohammad ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Asif, Mohammed Eesa; Extreme Robotics Lab, School of Metallurgy & Materials, University of Birmingham, Birmingham, UK
Butt, Javaid; School of Engineering and the Built Environment, Birmingham City University, Birmingham, UK
VOOS, Holger ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Rastegarpanah, Alireza; Extreme Robotics Lab, School of Metallurgy & Materials, University of Birmingham, Birmingham, UK
External co-authors :
yes
Language :
English
Title :
Mobile robotics and 3D printing: addressing challenges in path planning and scalability
Bhatt PM, Malhan RK, Shembekar AV, et al.Expanding capabilities of additive manufacturing through use of robotics technologies: a survey. Addit Manuf. 2020;31:100933.
DebRoy T, Wei HL, Zuback JS, et al.Additive manufacturing of metallic components–process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001
Gibson I, Rosen D, Stucker B., Additive manufacturing technologies. New York (NY): Springer; 2015. doi: 10.1007/978-1-4939-2113-3
Campbell I, Bourell D, Gibson I., Additive manufacturing: rapid prototyping comes of age. Rapid Prototyp J. 2012;18(4):255–258. doi: 10.1108/13552541211231563
Delgado Camacho D, Clayton P, O'Brien W, et al.Applications of additive manufacturing in the construction industry–a forward-looking review. Autom Constr. 2018;89:110–119. doi: 10.1016/j.autcon.2017.12.031
Ngo T, Kashani A, Imbalzano G, et al.Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composit Part B. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012
Uhlmann E, Bergmann A, Bolz R, et al.Application of additive manufactured tungsten carbide tool electrodes in EDM. Procedia CIRP. 2018;68:86–90. doi: 10.1016/j.procir.2017.12.027
Bártolo PJ, Gibson I., History of stereolithographic processes. Boston: Springer; 2011.
Salles AS, Gyi DE., An evaluation of personalised insoles developed using additive manufacturing. J Sports Sci. 2013;31(4):442–450. doi: 10.1080/02640414.2012.736629
Leal R, Barreiros FM, Alves L, et al.Additive manufacturing tooling for the automotive industry. Int J Adv Manuf Technol. 2017;92(5-8):1671–1676. doi: 10.1007/s00170-017-0239-8
Uriondo A, Esperon-Miguez M, Perinpanayagam S., The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc Inst Mech Eng Part G J Aerosp Eng. 2015;229(11):2132–2147. doi: 10.1177/0954410014568797
Bos F, Wolfs R, Ahmed Z, et al.Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyp. 2016;11(3):209–225. doi: 10.1080/17452759.2016.1209867
Aydin L, Kucuk S., A method for more accurate fea results on a medical device developed by 3D technologies. Polym Adv Technol. 2018;29(8):2281–2286. doi: 10.1002/pat.4339
Liu Z, He B, Lyu T, et al.A review on additive manufacturing of titanium alloys for aerospace applications: directed energy deposition and beyond ti-6al-4 v. JOM J Miner Metals Mater Soc. 2021;73(6):1804–1818. doi: 10.1007/s11837-021-04670-6
Meng Z, He J, Li D., Additive manufacturing and large deformation responses of highly-porous polycaprolactone scaffolds with helical architectures for breast tissue engineering. Virtual Phys Prototyp. 2021;16(3):291–305. doi: 10.1080/17452759.2021.1930069
Dörfler K, Dielemans G, Lachmayer L, et al.Additive manufacturing using mobile robots: opportunities and challenges for building construction. Cem Concr Res. 2022;158:106772doi: 10.1016/j.cemconres.2022.106772
Jiang Z, Wang H, Sun Y., Improved co-scheduling of multi-layer printing path scanning for collaborative additive manufacturing. IISE Trans. 2020;53:960–973. doi: 10.1080/24725854.2020.1807076
Lachmayer L, Recker T, Raatz A., Contour tracking control for mobile robots applicable to large-scale assembly and additive manufacturing in construction. Procedia CIRP. 2022;106:108–113. doi: 10.1016/j.procir.2022.02.163
Oropallo W, Piegl LA., Ten challenges in 3D printing. Eng Comput. 2016;32(1):135–148. doi: 10.1007/s00366-015-0407-0
Burns AJ., Material depositing mobile robots for application to cementitious additive manufacturing, The University of Liverpool (United Kingdom). 2020.
Jiang J, Ma Y., Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: a review. Micromachines. 2020;11(7):633doi: 10.3390/MI11070633
Evjemo LD, Moe S, Gravdahl JT, et al. Additive manufacturing by robot manipulator: an overview of the state-of-the-art and proof-of-concept results. In: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Vol. 6. 2017; Limassol, Cyprus. p. 1–8.
Dörfler K, Dielemans G, Leutenegger S, et al.Advancing construction in existing contexts: prospects and barriers of 3D printing with mobile robots for building maintenance and repair. Cem Concr Res. 2024;186:107656. doi: 10.1016/j.cemconres.2024.107656
Tay Y, Panda B, Paul SC, et al.3D printing trends in building and construction industry: a review. Virtual Phys Prototyp. 2017;12:261–276. doi: 10.1080/17452759.2017.1326724
Goh GD, Wong KK, Tan N, et al.Large-format additive manufacturing of polymers: a review of fabrication processes. Mater Des. 2024;19. doi: 10.1080/17452759.2024.2336160
Vicente CM, Sardinha M, Reis L, et al.Large-format additive manufacturing of polymer extrusion-based deposition systems: review and applications. Prog Addit Manuf. 2023;8:1257–1280. doi: 10.1007/s40964-023-00397-9
Love LJ, Duty CE, Post BK, et al. Breaking barriers in polymer additive manufacturing. 2015. https://www.osti.gov/biblio/1185467.
Alhijaily A, Kilic ZM, Bartolo P., Development of a novel gantry system for cooperative printing of plastic materials. Virtual Phys Prototyp. 2024;19(1):e2305208. doi: 10.1080/17452759.2024.2305208
Walia K, Khan A, Breedon P., Polymer-based additive manufacturing: process optimisation for low-cost industrial robotics manufacture. Polymers. 2021;13(16):2809. doi: 10.3390/polym13162809
Sarabia-Vallejos MA, Rodríguez-Umanzor FE, González-Henríquez CM, et al.Innovation in additive manufacturing using polymers: a survey on the technological and material developments. Polymers. 2022;14(7):1351. doi: 10.3390/polym14071351
Carbonell R, Song H, Seepersad C, et al. Design for additive manufacturing of pneumatic soft robotics via a large-scale, high-viscosity vat photopolymerization process. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 87332. American Society of Mechanical Engineers; 2023. p. V005T05A015.
Kubalak JR, Wicks AL, Williams CB., Exploring multi-axis material extrusion additive manufacturing for improving mechanical properties of printed parts. Rapid Prototyp J. 2018;25(2):356–362. doi: 10.1108/RPJ-02-2018-0035
Yigit IE, Lazoglu I., Helical slicing method for material extrusion-based robotic additive manufacturing. Prog Addit Manuf. 2019;4:225–232. doi: 10.1007/s40964-019-00090-w
Kumaran M, Senthilkumar V., Generative design and topology optimization of analysis and repair work of industrial robot arm manufactured using additive manufacturing technology. In: IOP Conference Series: Materials Science and Engineering. Vol. 1012. IOP Publishing; 2021. p. 012036.
Tankova T, da Silva LS., Robotics and additive manufacturing in the construction industry. Current Robot Rep. 2020;1:13–18. doi: 10.1007/s43154-020-00003-8
Bhatt PM, Kulkarni A, Malhan RK, et al.Automated planning for robotic multi-resolution additive manufacturing. J Comput Inf Sci Eng. 2022;22(2):021006. doi: 10.1115/1.4052083
Shakor P, Chu S, Puzatova A, et al.Review of binder jetting 3D printing in the construction industry. Prog Addit Manuf. 2022;7:643–669. doi: 10.1007/s40964-021-00252-9
Muktadir M, Yi S, Elliott AM., Design of robot grippers for binder jet products handling. Sci Rep. 2024;14:5750. doi: 10.1038/s41598-024-56385-8
Kaji F, Jinoop AN, Zimny M, et al.Process planning for additive manufacturing of geometries with variable overhang angles using a robotic laser directed energy deposition system. Addit Manuf Lett. 2022;2:100035. doi: 10.1016/j.addlet.2022.100035
Kaji F, Jinoop AN, Zardoshtian A, et al.Robotic laser directed energy deposition-based additive manufacturing of tubular components with variable overhang angles: adaptive trajectory planning and characterization. Addit Manuf. 2023;61:103366.
Bhatt PM, Peralta M, Bruck HA, et al. Robot assisted additive manufacturing of thin multifunctional structures. In: International Manufacturing Science and Engineering Conference. Vol. 51357. American Society of Mechanical Engineers; 2018. p. V001T01A012.
Bhatt PM, Kabir AM, Peralta M, et al.A robotic cell for performing sheet lamination-based additive manufacturing. Addit Manuf. 2019;27:278–289.
Lohr H, King P, Vargas AP, et al. Continuous3d, an end-to-end solution for robotic additive manufacturing, MODSIM2023. In: 25th International Congress on Modelling and Simulation. 2023; Darwin, Northern Territory, Australia. https://api.semanticscholar.org/CorpusID:260750127.
Shen H, Pan L, Qian J., Research on large-scale additive manufacturing based on multi-robot collaboration technology. Addit Manuf. 2019;30:100906. https://api.semanticscholar.org/CorpusID:208095636
Barnett E, Gosselin C., Large-scale 3D printing with a cable-suspended robot. Addit Manuf. 2015;7:27–44. https://api.semanticscholar.org/CorpusID:55180046
Michalos G, Kousi N, Makris S, et al.Performance assessment of production systems with mobile robots. Procedia CIRP. 2016;41:195–200. doi: 10.1016/j.procir.2015.12.097
Paolini A, Kollmannsberger S, Rank E., Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Additive Manufacturing. 2019. https://api.semanticscholar.org/CorpusID:208129407
Qin J, Hu F, Liu Y, et al.Research and application of machine learning for additive manufacturing. Addit Manuf. 2022 Apr;52:102691. doi: 10.1016/j.addma.2022.102691
Rastegarparnah A, Asif ME, Stolkin R., Hybrid neural networks for enhanced predictions of remaining useful life in lithium-ion batteries. Batteries. 2024;10(3):106. doi: 10.3390/batteries10030106
Mypati O, Mukherjee A, Mishra D, et al.A critical review on applications of artificial intelligence in manufacturing. Artif Intell Rev. 2023;56:661–768. doi: 10.1007/s10462-023-10535-y
Milazzo M, Libonati F., The synergistic role of additive manufacturing and artificial intelligence for the design of new advanced intelligent systems. Advanced Intelligent Systems. 2022 Jun;4. doi: 10.1002/aisy.202100278
Chandra M, Vimal KE, Rajak S., A comparative study of machine learning algorithms in the prediction of bead geometry in wire-arc additive manufacturing. Int J Interact Des Manuf. 2023;18:6625–6638. doi: 10.1007/s12008-023-01326-4
Ding D, He F, Yuan L, et al.The first step towards intelligent wire arc additive manufacturing: an automatic bead modelling system using machine learning through industrial information integration. J Ind Inf Integr. 2021 Sep;23:100218. doi: 10.1016/j.jii.2021.100218
Yaseer A, Chen H., Machine learning based layer roughness modeling in robotic additive manufacturing. J Manuf Process. 2021;70:543–552. doi: 10.1016/j.jmapro.2021.08.056
Chen L, Yao X, Xu P, et al.Rapid surface defect identification for additive manufacturing with in-situ point cloud processing and machine learning. Virtual Phys Prototyp. 2021;16:50–67. doi: 10.1080/17452759.2020.1832695
Chen H, Yaseer A, Zhang Y., Top surface roughness modeling for robotic wire arc additive manufacturing. J Manuf Mater Process. 2022 Apr;6. doi: 10.3390/jmmp6020039
Kaji F, Nguyen-Huu H, Budhwani A, et al.A deep-learning-based in-situ surface anomaly detection methodology for laser directed energy deposition via powder feeding. J Manuf Process. 2022;81:624–637. doi: 10.1016/j.jmapro.2022.06.046
Kaji F, Nguyen-Huu H, Narayanan JA, et al.Intermittent adaptive trajectory planning for geometric defect correction in large-scale robotic laser directed energy deposition based additive manufacturing. J Intell Manuf. 2023;35:3149–3168. doi: 10.1007/s10845-023-02194-1
Rao KV, Parimi S, Raju LS, et al.Modelling and optimization of weld bead geometry in robotic gas metal arc-based additive manufacturing using machine learning, finite-element modelling and graph theory and matrix approach. Soft Computing. 2022;26:3385–3399. doi: 10.1007/s00500-022-06749-x
Ren K, Chew Y, Zhang YF, et al.Thermal field prediction for laser scanning paths in laser aided additive manufacturing by physics-based machine learning. Comput Methods Appl Mech Eng. 2020 Apr;362:112734. doi: 10.1016/j.cma.2019.112734
Krizhevsky A, Sutskever I, Hinton GE., Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;60:84–90.
Davtalab O, Kazemian A, Yuan X, et al.Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection. J Intell Manuf. 2022;33:771–784. doi: 10.1007/s10845-020-01684-w
Parisi F, Sangiorgio V, Parisi N, et al.A new concept for large additive manufacturing in construction: tower crane-based 3D printing controlled by deep reinforcement learning. Constr Innov. 2024;24(1):8–32. doi: 10.1108/CI-10-2022-0278
Felbrich B, Schork T, Menges A., Autonomous robotic additive manufacturing through distributed model-free deep reinforcement learning in computational design environments. Constr Robot. 2022;6(1):15–37. doi: 10.1007/s41693-022-00069-0
Haarnoja T, Zhou A, Hartikainen K, et al. Soft actor-critic algorithms and applications. [Online] abs/1812.05905. 2018. https://api.semanticscholar.org/CorpusID:55703664.
Petrik J, Bambach M., Reinforcement learning and optimization based path planning for thin-walled structures in wire arc additive manufacturing. J Manuf Process. 2023;93:75–89. doi: 10.1016/j.jmapro.2023.03.013
Bøhn E, Coates EM, Moe S, et al. Deep reinforcement learning attitude control of fixed-wing uavs using proximal policy optimization. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE; 2019. p. 523–533.
Mattera G, Caggiano A, Nele L., Optimal data-driven control of manufacturing processes using reinforcement learning: an application to wire arc additive manufacturing. J Intell Manuf. 2024;1–20.
Venugopal V, Anand S., Structural and thermal generative design using reinforcement learning-based search strategy for additive manufacturing. Manuf Lett. 2023;35:564–575. doi: 10.1016/j.mfglet.2023.08.030
Mozaffar M, Ebrahimi A, Cao J., Toolpath design for additive manufacturing using deep reinforcement learning, Semantic Scholar abs/2009.14365. 2020. https://api.semanticscholar.org/CorpusID:222066652.
Fan J, Wang Z, Xie Y, et al. A theoretical analysis of deep q-learning. In: Learning for Dynamics and Control. PMLR; 2020. p. 486–489.
Jayant AK, Bhatnagar S., Model-based safe deep reinforcement learning via a constrained proximal policy optimization algorithm. Adv Neural Inf Process Syst. 2022;35:24432–24445.
Dharmadhikari S, Menon N, Basak A., A reinforcement learning approach for process parameter optimization in additive manufacturing. Addit Manuf. 2023;71:103556.
Wu R, Peng H, Guimbretière F, et al.Printing arbitrary meshes with a 5dof wireframe printer. ACM Trans Graph. 2016;35(4):101–109. doi: 10.1145/2897824.2925966
Huang Y, Zhang J, Hu X, et al.Framefab: robotic fabrication of frame shapes. ACM Trans Graph. 2016;35(6):224–234. doi: 10.1145/2980179.2982401
Luo L, Baran I, Rusinkiewicz S, et al.Chopper: partitioning models into 3D-printable parts. ACM Trans Graph. 2012;31(6):129–139. doi: 10.1145/2366145.2366148
Ilushin O, Elber G, Halperin D, et al.Precise global collision detection in multi-axis nc-machining. Comput-Aided Des. 2005;37(9):909–920. doi: 10.1016/j.cad.2004.09.018
Kim Y-J, Elber G, Bartoň M, et al.Precise gouging-free tool orientations for 5-axis cnc machining. Comput-Aided Des. 2015;58:220–229. doi: 10.1016/j.cad.2014.08.010
Wang N, Tang K., Automatic generation of gouge-free and angular velocity-compliant five-axis toolpath. Comput-Aided Des. 2007;39(10):841–852. doi: 10.1016/j.cad.2007.04.003
Dai C, Wang CCL, Wu C, et al.Support-free volume printing by multi-axis motion. ACM Trans Graph. 2018;37(4):1–14. doi: 10.1145/3197517.3201342
Biegler M, Wang J, Kaiser L, et al.Automated tool-path generation for rapid manufacturing of additive manufacturing directed energy deposition geometries. Steel Res Int. 2020;91(11):2000017. doi: 10.1002/srin.v91.11
Xiao X, Joshi S., Automatic toolpath generation for heterogeneous objects manufactured by directed energy deposition additive manufacturing process. J Manuf Sci Eng. 2018;140(7):071005. doi: 10.1115/1.4039491
Ding D, Pan Z, Cuiuri D, et al.A tool-path generation strategy for wire and arc additive manufacturing. Int J Adv Manuf Technol. 2014;73:173–183. doi: 10.1007/s00170-014-5808-5
Ding D, Shen C, Pan Z, et al.Towards an automated robotic arc-welding-based additive manufacturing system from cad to finished part. Comput-Aided Des. 2016;73:66–75. doi: 10.1016/j.cad.2015.12.003
Arinez JF, Chang Q, Gao RX, et al.Artificial intelligence in advanced manufacturing: current status and future outlook. J Manuf Sci Eng Trans ASME. 2020 Nov;142:110804. doi: 10.1115/1.4047855
Mattera G, Nele L, Paolella D., Monitoring and control the wire arc additive manufacturing process using artificial intelligence techniques: a review. J Intell Manuf. 2024;35:467–497. doi: 10.1007/s10845-023-02085-5
Keating SJ, Leland JC, Cai L, et al.Toward site-specific and self-sufficient robotic fabrication on architectural scales. Sci. Robot. 2017;2:eaam8986. doi: 10.1126/scirobotics.aam8986
Zhang X, Li M, Lim JH, et al.Large-scale 3D printing by a team of mobile robots. Autom Constr. 2018;95:98–106. doi: 10.1016/j.autcon.2018.08.004
Zhang TM, Q. P., Printing-while-moving: a new paradigm for large-scale robotic 3D printing. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019; Macau, China. p. 2015–2020.
Sustarevas J, Butters D, Hammid M, et al. Map -- a mobile agile printer robot for on-site construction. In: IEEE International Conference on Intelligent Robots and Systems. 2018; Madrid, Spain. p. 2441–2448. doi: 10.1109/IROS.2018.8593815
Sustarevas J, Tan KXB, Gerber D, et al. Youwasps: towards autonomous multi-robot mobile deposition for construction. In: IEEE International Conference on Intelligent Robots and Systems. Vol. 11. 2019; Macau, China. p. 2320–2327.
Yan Z, Jouandeau N, Cherif A., A survey and analysis of multi-robot coordination. Int J Adv Robot Syst. 2013;10:12. doi: 10.5772/57313
Sustarevas J, Kanoulas D, Julier S., Task-consistent path planning for mobile 3D printing. In: IEEE International Conference on Intelligent Robots and Systems. 2021; Prague, Czech Republic. p. 2143–2150. doi: 10.1109/IROS51168.2021.9635916
Poudel L, Marques LG, Williams RA, et al.Toward swarm manufacturing: architecting a cooperative 3D printing system. J Manuf Sci Eng. 2022;144:081004. doi: 10.1115/1.4053681
Lachmayer L, Recker T, Dielemans G, et al.Autonomous sensing and localization of a mobile robot for multi-step additive manufacturing in construction. Int Archiv Photogramm Remote Sens Spat Inf Sci. 2022;43:453–458. doi: 10.5194/isprs-archives-XLIII-B1-2022-453-2022
Campos C, Elvira R, Rodríguez JJG, et al.Orb-slam3: an accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Trans Robot. 2021;37(6):1874–1890. doi: 10.1109/TRO.2021.3075644
Yin H, Li S, Tao Y, et al.Dynam-slam: an accurate, robust stereo visual-inertial slam method in dynamic environments. IEEE Trans Robot. 2022;39(1):289–308. doi: 10.1109/TRO.2022.3199087
Ren W, Wen G, Zhang Z, et al.Quality monitoring in additive manufacturing using emission spectroscopy and unsupervised deep learning. Mater Manuf Process. 2022;37:1339–1346. doi: 10.1080/10426914.2021.1906891
Wang Y, Ng Y, Sa I, et al. Mavis: multi-camera augmented visual-inertial slam using SE2(3) based exact imu pre-integration. In: 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2024. p. 1694–1700.
Gaikwad A, Chang T, Giera B, et al.In-process monitoring and prediction of droplet quality in droplet-on-demand liquid metal jetting additive manufacturing using machine learning. J Intell Manuf. 2022;33(7):2093–2117. doi: 10.1007/s10845-022-01977-2
Silva RCC, de Menezes Júnior JMP, de Araújo Júnior JM., Optimization of narx neural models using particle swarm optimization and genetic algorithms applied to identification of photovoltaic systems. J Sol Energy Eng. 2021;143(5):051001. doi: 10.1115/1.4049718
Ibrahim S, Olbrich A, Lindemann H, et al. Automated additive manufacturing of concrete structures without formwork-concept for path planning. In: Tagungsband des 3. Kongresses montage handhabung industrieroboter. Berlin (Germany): Springer; 2018. p. 83–91.
Li X, Han Q, Zhang G., Large-size sprocket repairing based on robotic gmaw additive manufacturing. Weld World. 2021;65(5):793–805. doi: 10.1007/s40194-021-01080-9
Lachmayer L, Müller N, Herlyn T, et al. Volume flow-based process control for robotic additive manufacturing processes in construction. In: 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). 2023; Auckland, New Zealand. p. 1–6. doi: 10.1109/CASE56687.2023.10260620
Bhatt PM, Kulkarni A, Malhan RK, et al.Automated planning for robotic multi-Resolution additive manufacturing. J Comput Inf Sci Eng. 2021;22:021006. doi: 10.1115/1.4052083
Asare-Manu V, Karunathilake S, Geng Z., Image segmentation with human-in-the-loop in automated de-caking process for powder bed additive manufacturing. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 87295. American Society of Mechanical Engineers; 2023. p. V002T02A029.
Gupta N, Antham CP, Das KK, et al. Advanced composite manufacturing using additive manufacturing and robotic techniques. In: E3S Web of Conferences. Vol. 430. EDP Sciences; 2023. p. 01118.
Zhang K, Chermprayong P, Xiao F, et al.Aerial additive manufacturing with multiple autonomous robots. Nature. 2022;609(7928):709–717. doi: 10.1038/s41586-022-04988-4
Lei H, Canzhen X, Fuchun H, et al. Design and analysis of omnidirectional mobile material handling robots that can adapt to complex environments. In: 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI). 2023; Chengdu, China. p. 1606–1615. doi: 10.1109/ICETCI57876.2023.10176548
Cooke O, Al-Musaibeli H, Ahmad R., A feature extraction algorithm for hybrid manufacturing and its application in robot-based additive and subtractive processes. In: 2023 International Conference on Robotics and Automation in Industry (ICRAI). 2023; Karachi, Pakistan. p. 1–6. doi: 10.1109/ICRAI57502.2023.10089593
Madridano A, Al-Kaff A, Martín D, et al.Trajectory planning for multi-robot systems: methods and applications. Expert Syst Appl. 2021;173:114660. doi: 10.1016/j.eswa.2021.114660
Wu H, Liu Y, Guan Y., Online generation of collision-free trajectories for multiple robots in a shared workcell. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2017; Macau, China. p. 2015–2020 doi: 10.1109/robio.2017.8324715
Chen Y, Rosolia U, Ames AD., Decentralized task and path planning for multi-robot systems. IEEE Robot Autom Lett. 2021;6(3):4337–4344. doi: 10.1109/LRA.2021.3068103
van den Berg J, Snoeyink J, Lin M, et al.Centralized path planning for multiple robots: optimal decoupling into sequential plans. Robot Sci Syst. 2009;2–3. doi: 10.15607/rss.2009.V.018
Turpin M, Michael N, Kumar V., Decentralized formation control with variable shapes for aerial robots. In: 2012 IEEE International Conference on Robotics and Automation. 2012; St. Paul, MN, USA. p. 23–30. doi: 10.1109/ICRA.2012.6225196
Poudel L, Elagandula S, Zhou W, et al.Decentralized and centralized planning for multi-robot additive manufacturing. J Mech Des. 2023;145(1):012003. doi: 10.1115/1.4055735
Khalidi D, Gujarathi D, Saha I., T: a heuristic search based path planning algorithm for temporal logic specifications. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2020. p. 8476–8482.
Lin W., Research on AGV path planning based on improved A* algorithm. Scholars Journal of Engineering and Technology. 2023;11:39–44. doi: 10.36347/sjet.2023.v11i03.004
Lim J, Tsiotras P., A generalized A* algorithm for finding globally optimal paths in weighted colored graphs. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2021. p. 7503–7509.
Zhong X, Tian J, Hu H, et al.Hybrid path planning based on safe A* algorithm and adaptive window approach for mobile robot in large-scale dynamic environment. J Intel Robot Syst. 2020;99(1):65–77. doi: 10.1007/s10846-019-01112-z
Li Y, Jin R, Xu X, et al.A mobile robot path planning algorithm based on improved A* algorithm and dynamic window approach. IEEE Access. 2022;10:57736–57747. doi: 10.1109/ACCESS.2022.3179397
Li Y, Ma T, Chen P, et al.Autonomous underwater vehicle optimal path planning method for seabed terrain matching navigation. Ocean Eng. 2017;133:107–115. doi: 10.1016/j.oceaneng.2017.01.026
Sang H, You Y, Sun X, et al.The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations. Ocean Eng. 2021;223:108709. doi: 10.1016/j.oceaneng.2021.108709
Liao T, Chen F, Wu Y, et al.Research on path planning with the integration of adaptive a-star algorithm and improved dynamic window approach. Electronics. 2024;13(2):455. doi: 10.3390/electronics13020455
Zhao L, Shi G., A method for simplifying ship trajectory based on improved douglas–peucker algorithm. Ocean Eng. 2018;166:37–46. doi: 10.1016/j.oceaneng.2018.08.005
Wang C, Cheng C, Yang D, et al.Path planning in localization uncertaining environment based on dijkstra method. Front Neurorobot. 2022;16:821991. doi: 10.3389/fnbot.2022.821991
Balado J, Díaz-Vilariño L, Arias P, et al.Point clouds for direct pedestrian pathfinding in urban environments. ISPRS J Photogramm Remote Sens. 2019;148:184–196. doi: 10.1016/j.isprsjprs.2019.01.004
Kim S, Jin H, Seo M, et al. Optimal path planning of automated guided vehicle using dijkstra algorithm under dynamic conditions. In: 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA). IEEE; 2019. p. 231–236.
Xia L, Lin S, Ma G., Stress-based tool-path planning methodology for fused filament fabrication. Addit Manuf. 2020;32:101020.
Bai X, Yan W, Cao M, et al.Distributed multi-vehicle task assignment in a time-invariant drift field with obstacles. IET Control Theory Appl. 2019;13(17):2886–2893. doi: 10.1049/cth2.v13.17
Luo M, Hou X, Yang J., Surface optimal path planning using an extended dijkstra algorithm. IEEE Access. 2020;8:147827–147838. doi: 10.1109/Access.6287639
Pin L., Path planning based on visibility graph and A* algorithm. Comput Eng. 2014.
Ren Z, Rathinam S, Likhachev M, et al.Multi-objective path-based D* lite. IEEE Robot Autom Lett. 2021;7:3318–3325. doi: 10.1109/LRA.2022.3146918
Nagib G, Gharieb W., Path planning for a mobile robot using genetic algorithms. IEEE Proc Robot. 2004;185189:185–189.
Tu J, Yang SX., Genetic algorithm based path planning for a mobile robot. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422). Vol. 1. IEEE; 2003. p. 1221–1226.
Sathiya V, Chinnadurai M., Evolutionary algorithms-based multi-objective optimal mobile robot trajectory planning. Robotica. 2019;37(8):1363–1382. doi: 10.1017/S026357471800156X
Ngatchou P, Zarei A, El-Sharkawi A., Pareto multi objective optimization. In: Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems. IEEE; 2005. p. 84–91.
Fetanat M, Haghzad S, Shouraki SB., Optimization of dynamic mobile robot path planning based on evolutionary methods. In: 2015 AI & Robotics (IRANOPEN). IEEE; 2015. p. 1–7.
Qu H, Xing K, Alexander T., An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots. Neurocomputing. 2013;120:509–517. doi: 10.1016/j.neucom.2013.04.020
Hancock PJ., An empirical comparison of selection methods in evolutionary algorithms. In: AISB Workshop on Evolutionary Computing. Springer; 1994. p. 80–94.
Gul F, Rahiman W, Alhady S, et al.Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using pso–gwo optimization algorithm with evolutionary programming. J Ambient Intell Humaniz Comput. 2021;12:7873–7890. doi: 10.1007/s12652-020-02514-w
Abbas NH, Ali FM., Path planning of an autonomous mobile robot using directed artificial bee colony algorithm. Int J Comput Appl. 2014;96(11):11–16.
Saraswathi M, Murali GB, Deepak B., Optimal path planning of mobile robot using hybrid cuckoo search-bat algorithm. Procedia Comput Sci. 2018;133:510–517. doi: 10.1016/j.procs.2018.07.064
Huang H-C, Tsai C-C., Global path planning for autonomous robot navigation using hybrid metaheuristic ga-pso algorithm. In: SICE Annual Conference 2011. IEEE; 2011. p. 1338–1343.
Dao T-K, Pan T-S, Pan J-S., A multi-objective optimal mobile robot path planning based on whale optimization algorithm. In: 2016 IEEE 13th International Conference on Signal Processing (ICSP). IEEE; 2016. p. 337–342.
Sierakowski CA, Coelho LDS., Study of two swarm intelligence techniques for path planning of mobile robots. In: 16th IFAC World Congress, Prague, Citeseer; 2005. p. 1–6.
Bhattacharya P, Gavrilova ML., Voronoi diagram in optimal path planning. In: 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007). IEEE; 2007. p. 38–47.
Ayawli BBK, Mei X, Shen M, et al.Mobile robot path planning in dynamic environment using voronoi diagram and computation geometry technique. IEEE Access. 2019;7:86026–86040. doi: 10.1109/Access.6287639
Santiago RMC, De Ocampo AL, Ubando AT, et al. Path planning for mobile robots using genetic algorithm and probabilistic roadmap. In: 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). 2017; Manila, Philippines. p. 1–5. doi: 10.1109/HNICEM.2017.8269498
Liu C, Chang J, Liu C., Path planning for mobile robot based on an improved probabilistic roadmap method. Chinese J Electron. 2009;18(3):395–399. doi: 10.23919/CJE.2009.10138265
Chen G, Luo N, Liu D, et al.Path planning for manipulators based on an improved probabilistic roadmap method. Robot Comput Integr Manuf. 2021;72:102196. doi: 10.1016/j.rcim.2021.102196
Kala R., Rapidly exploring random graphs: motion planning of multiple mobile robots. Adv Robot. 2013;27(14):1113–1122. doi: 10.1080/01691864.2013.805472
Zhang P, Xiong C, Li W, et al.Path planning for mobile robot based on modified rapidly exploring random tree method and neural network. Int J Adv Robot Syst. 2018;15(3):1729881418784221. doi: 10.1177/1729881418784221
Zhang Z, Qiao B, Zhao W, et al.A predictive path planning algorithm for mobile robot in dynamic environments based on rapidly exploring random tree. Arab J Sci Eng. 2021;46:8223–8232. doi: 10.1007/s13369-021-05443-8
Patle BK, Pandey A, Parhi DR, et al.A review: on path planning strategies for navigation of mobile robot. Defence Technol. 2019 Aug;15:582–606. doi: 10.1016/j.dt.2019.04.011
Qin H, Shao S, Wang T, et al.Review of autonomous path planning algorithms for mobile robots. Drones. 2023 Mar;7. doi: 10.3390/drones7030211
Spurny V, Baca T, Saska M., Complex manoeuvres of heterogeneous mav-ugv formations using a model predictive control. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR). 2016; Miedzyzdroje, Poland. p. 998–1003. doi: 10.1109/MMAR.2016.7575274
Luis CE, Vukosavljev M, Schoellig AP., Online trajectory generation with distributed model predictive control for multi-robot motion planning. IEEE Robot Autom Lett. 2020;5(2):604–611. doi: 10.1109/LSP.2016.
Hang P, Huang S, Chen X, et al.Path planning of collision avoidance for unmanned ground vehicles: a nonlinear model predictive control approach. Proc Inst Mech Eng Part I J Syst Control Eng. 2021;235(2):222–236. doi: 10.1177/0954411920971398
Dale LK, Amato NM., Probabilistic roadmaps-putting it all together. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164). Vol. 2. IEEE; 2001. p. 1940–1947.
Chi W, Ding Z, Wang J, et al.A generalized voronoi diagram-based efficient heuristic path planning method for rrts in mobile robots. IEEE Trans Ind Electron. 2021;69(5):4926–4937. doi: 10.1109/TIE.2021.3078390
Ayawli BBK, Appiah AY, Nti IK, et al.Path planning for mobile robots using morphological dilation voronoi diagram roadmap algorithm. Sci Afr. 2021;12:e00745.
Turanli M, Temeltas H., Adaptive coverage control with guaranteed power voronoi diagrams. In: 2017 4th International Conference on Systems and Informatics (ICSAI). 2017; Hangzhou, China. p. 7–13. doi: 10.1109/ICSAI.2017.8248255
Ravankar AA, Ravankar A, Emaru T, et al.Hpprm: hybrid potential based probabilistic roadmap algorithm for improved dynamic path planning of mobile robots. IEEE Access. 2020;8:221743–221766. doi: 10.1109/ACCESS.2020.3043333
Qiao L, Luo X, Luo Q., An optimized probabilistic roadmap algorithm for path planning of mobile robots in complex environments with narrow channels. Sensors. 2022;22(22):8983. doi: 10.3390/s22228983
Sudhakara P, Ganapathy V, Sundaran K., Probabilistic roadmaps-spline based trajectory planning for wheeled mobile robot. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). 2017; Chennai, India. p. 3579–3583. doi: 10.1109/ICECDS.2017.8390129
Wu C-Y, Lin H-Y., Autonomous mobile robot exploration in unknown indoor environments based on rapidly-exploring random tree. In: 2019 IEEE International Conference on Industrial Technology (ICIT). IEEE; 2019. p. 1345–1350.
Sustarevas J, Kanoulas D, Julier S., Autonomous mobile 3D printing of large-scale trajectories. In: IEEE International Conference on Intelligent Robots and Systems. 2022; Kyoto, Japan. p. 6561–6568. doi: 10.1109/IROS47612.2022.9982274
Connell D, Manh La H., Extended rapidly exploring random tree–based dynamic path planning and replanning for mobile robots. Int J Adv Robot Syst. 2018;15(3):1729881418773874. doi: 10.1177/1729881418773874
Wang L, Yang X, Chen Z, et al.Application of the improved rapidly exploring random tree algorithm to an insect-like mobile robot in a narrow environment. Biomimetics. 2023;8(4):374. doi: 10.3390/biomimetics8040374
Khatib O., Real-time obstacle avoidance for manipulators and mobile robots. Int J Rob Res. 1986;5(1):90–98. doi: 10.1177/027836498600500106
Zhang Y, Hong GS, Ye D, et al.Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion am process monitoring. Mater Des. 2018;156:458–469. doi: 10.1016/j.matdes.2018.07.002
Wang M, Su Z, Tu D, et al. A hybrid algorithm based on artificial potential field and bug for path planning of mobile robot. In: Proceedings of 2013 2nd International Conference on Measurement, Information and Control. Vol. 2. IEEE; 2013. p. 1393–1398.
Abdel-Rahman AS, Zahran S, Elnaghi BE, et al.Enhanced hybrid path planning algorithm based on apf and a-star. Int Arch Photogramm Remote Sens Spat Inf Sci. 2023;48:867–873. doi: 10.5194/isprs-archives-XLVIII-1-W2-2023-867-2023
Shin Y, Kim E., Hybrid path planning using positioning risk and artificial potential fields. Aerosp Sci Technol. 2021;112:106640. doi: 10.1016/j.ast.2021.106640
Orozco-Rosas U, Montiel O, Sepúlveda R., Mobile robot path planning using membrane evolutionary artificial potential field. Appl Soft Comput J. 2019;77:236–251. doi: 10.1016/j.asoc.2019.01.036
Yao Q, Zheng Z, Qi L, et al.Path planning method with improved artificial potential field -- a reinforcement learning perspective. IEEE Access. 2020;8:135513–135523. doi: 10.1109/ACCESS.2020.3011211
Yang L, Qi J, Song D, et al.Survey of robot 3D path planning algorithms. J Control Sci Eng. 2016;2016.
Wang D, Wei W, Yeboah Y, et al.A robust model predictive control strategy for trajectory tracking of omni-directional mobile robots. J Intel Robot Syst. 2020;98:439–453. doi: 10.1007/s10846-019-01083-1
Azizi MR, Rastegarpanah A, Stolkin R., Motion planning and control of an omnidirectional mobile robot in dynamic environments. Robotics. 2021;10(1):48. doi: 10.3390/robotics10010048
Zuo Z, Yang X, Li Z, et al.Mpc-based cooperative control strategy of path planning and trajectory tracking for intelligent vehicles. IEEE Trans Intel Veh. 2020;6(3):513–522. doi: 10.1109/TIV.2020.3045837
Nascimento TP, Dórea CE, Gonçalves LMG., Nonholonomic mobile robots' trajectory tracking model predictive control: a survey. Robotica. 2018;36(5):676–696. doi: 10.1017/S0263574717000637
Ratliff N, Zucker M, Bagnell JA, et al. Chomp: gradient optimization techniques for efficient motion planning. In: 2009 IEEE International Conference on Robotics and Automation. 2009; Kobe, Japan. p. 489–494. doi: 10.1109/ROBOT.2009.5152817
You B, Li Z, Ding L, et al.A new optimization-driven path planning method with probabilistic completeness for wheeled mobile robots. Meas Control. 2019;52(5-6):317–325. doi: 10.1177/0020294019836127
Campos-Macías L, Gómez-Gutiérrez D, Aldana-López R, et al.A hybrid method for online trajectory planning of mobile robots in cluttered environments. IEEE Robot Autom Lett. 2017;2(2):935–942. doi: 10.1109/LRA.2017.2655145
Fernández JL, Sanz R, Benayas J, et al.Improving collision avoidance for mobile robots in partially known environments: the beam curvature method. Rob Auton Syst. 2004;46(4):205–219. doi: 10.1016/j.robot.2004.02.004
Phan D, Yang J, Grosu R, et al.Collision avoidance for mobile robots with limited sensing and limited information about moving obstacles. Form Methods Syst Des. 2017;51:62–86. doi: 10.1007/s10703-016-0265-4
Ricardo JA, Santos DA., Robust collision avoidance for mobile robots in the presence of moving obstacles. IEEE Control Syst Lett. 2023;7:1584–1589.
Guo B, Guo N, Cen Z., Motion saliency-based collision avoidance for mobile robots in dynamic environments. IEEE Trans Ind Electron. 2021;69(12):13203–13212. doi: 10.1109/TIE.2021.3128885
Guo B, Guo N, Cen Z., Obstacle avoidance with dynamic avoidance risk region for mobile robots in dynamic environments. IEEE Robot Autom Lett. 2022;7(3):5850–5857. doi: 10.1109/LRA.2022.3161710
Oleiwi BK, Mahfuz A, Roth H., Application of fuzzy logic for collision avoidance of mobile robots in dynamic-indoor environments. In: 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST). IEEE; 2021. p. 131–136.
Beschi M, Mutti S, Nicola G, et al.Optimal robot motion planning of redundant robots in machining and additive manufacturing applications. Electronics. 2019;8(12):1437. doi: 10.3390/electronics8121437
Ntakolia C, Moustakidis S, Siouras A., Autonomous path planning with obstacle avoidance for smart assistive systems. Expert Syst Appl. 2023;213:119049. doi: 10.1016/j.eswa.2022.119049
Xu T, Zhang S, Jiang Z, et al.Collision avoidance of high-speed obstacles for mobile robots via maximum-speed aware velocity obstacle method. IEEE Access. 2020;8:138493–138507. doi: 10.1109/Access.6287639
Sgorbissa A, Zaccaria R., Planning and obstacle avoidance in mobile robotics. Rob Auton Syst. 2012;60(4):628–638. doi: 10.1016/j.robot.2011.12.009
Van Den Berg J, Wilkie D, Guy SJ, et al. Lqg-obstacles: feedback control with collision avoidance for mobile robots with motion and sensing uncertainty. In: 2012 IEEE International Conference on Robotics and Automation. IEEE; 2012. p. 346–353.
Wang Y, Li X, Zhang J, et al.Review of wheeled mobile robot collision avoidance under unknown environment. Sci Prog. 2021;104(3):00368504211037771. doi: 10.1177/00368504211037771
Ravankar A, Ravankar AA, Rawankar A, et al.Autonomous and safe navigation of mobile robots in vineyard with smooth collision avoidance. Agriculture. 2021;11(10):954. doi: 10.3390/agriculture11100954
Panigrahi PK, Bisoy SK., Localization strategies for autonomous mobile robots: a review. J King Saud Univ-Comput Inf Sci. 2022 Sep;34:6019–6039. doi: 10.1016/j.jksuci.2021.02.015
Sandy T, Giftthaler M, Dörfler K, et al. Autonomous repositioning and localization of an in situ fabricator. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2016. p. 2852–2858.
Buchli J, Giftthaler M, Kumar N, et al.Digital in situ fabrication -- challenges and opportunities for robotic in situ fabrication in architecture, construction, and beyond. Cem Concr Res. 2018 Oct;112:66–75. doi: 10.1016/j.cemconres.2018.05.013
Xu X, Wang Z, Feng C., Projector-guided non-holonomic mobile 3D printing. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2021. p. 8039–8045.
Yu J, Su Y, Liao Y., The path planning of mobile robot by neural networks and hierarchical reinforcement learning. Front Neurorobot. 2020 Oct;14. doi: 10.3389/fnbot.2020.00063
Zhao P, Zheng J, Zhou Q, et al. A dueling-ddpg architecture for mobile robots path planning based on laser range findings, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 13031 LNAI (2021) 154–168. doi: 10.1007/978-3-030-89188-6_12
Zhao D, Ding Z, Li W, et al.Robotic arm trajectory planning method using deep deterministic policy gradient with hierarchical memory structure. IEEE Access. 2023;11:140801–140814. doi: 10.1109/ACCESS.2023.3340684
Gong H, Wang P, Ni C, et al.Efficient path planning for mobile robot based on deep deterministic policy gradient. Sensors. 2022 May;22. doi: 10.3390/s22093579
Singh A, Kalaichelvi V, Karthikeyan R., A survey on vision guided robotic systems with intelligent control strategies for autonomous tasks. Cogent Eng. 2022;9. doi: 10.1080/23311916.2022.2050020
Lim K, Zheng P, Chen C-H., A state-of-the-art survey of digital twin: techniques, engineering product lifecycle management and business innovation perspectives. J Intel Manuf. 2020;31:1313–1337. doi: 10.1007/s10845-019-01512-w
Butt J, Mohaghegh V., Combining digital twin and machine learning for the fused filament fabrication process. Metals. 2023;13. doi: 10.3390/met13010024
Altýparmak S, Yardley V, Shi Z, et al.State of the art and future perspectives. J Manuf Process. 2022;83:607–636. doi: 10.1016/j.jmapro.2022.09.032
Rachmawati S, Putra M, Lee J, et al.Digital twin-enabled 3D printer fault detection for smart additive manufacturing. Eng Appl Artif Intell. 2023;124:106430. doi: 10.1016/j.engappai.2023.106430
Pantelidakis M, Mykoniatis K, Liu J, et al.A digital twin ecosystem for additive manufacturing using a real-time development platform. Int J Adv Manuf Technol. 2022;120:6547–6563. doi: 10.1007/s00170-022-09164-6
Cai Y, Wang Y, Burnett M., Using augmented reality to build digital twin for reconfigurable additive manufacturing system. J Manuf Syst. 2020;56:598–604. doi: 10.1016/j.jmsy.2020.04.005
Li C, Zheng P, Li S, et al.Ar-assisted digital twin-enabled robot collaborative manufacturing system with human-in-the-loop. Robot Comput Integr Manuf. 2022;76:102321. doi: 10.1016/j.rcim.2022.102321
Chen L, Yao X, Liu K, et al.Multisensor fusion-based digital twin in additive manufacturing for in-situ quality monitoring and defect correction. Proc Des Soc. 2023;3:2755–2764. doi: 10.1017/pds.2023.276
Xu P, Yao X, Chen L, et al.In-process adaptive dimension correction strategy for laser aided additive manufacturing using laser line scanning. J Mater Process Technol. 2022;303:117544. doi: 10.1016/j.jmatprotec.2022.117544
Zhu C, Pires J, Azar A., A novel multi-brand robotic software interface for industrial additive manufacturing cells. Ind Robot. 2020;47:581–592. doi: 10.1108/IR-11-2019-0237