MAREHALLI SRINIVAS, Shesha Gopal ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science
AVANZINI, Francesco ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
no
Language :
English
Title :
Thermodynamics of Growth in Open Chemical Reaction Networks
H. Qian and D. A. Beard, Biophys. Chem. 114, 213 (2005). BICIAZ 0301-4622 10.1016/j.bpc.2004.12.001
T. Schmiedl and U. Seifert, J. Chem. Phys. 126, 044101 (2007). JCPSA6 0021-9606 10.1063/1.2428297
M. Polettini and M. Esposito, J. Chem. Phys. 141, 024117 (2014). JCPSA6 0021-9606 10.1063/1.4886396
R. Rao and M. Esposito, Phys. Rev. X 6, 041064 (2016). PRXHAE 2160-3308 10.1103/PhysRevX.6.041064
R. Rao and M. Esposito, J. Chem. Phys. 149, 245101 (2018). JCPSA6 0021-9606 10.1063/1.5042253
F. Avanzini, E. Penocchio, G. Falasco, and M. Esposito, J. Chem. Phys. 154, 094114 (2021). JCPSA6 0021-9606 10.1063/5.0041225
F. Avanzini and M. Esposito, J. Chem. Phys. 156, 014116 (2022). JCPSA6 0021-9606 10.1063/5.0076134
P. Gaspard, J. Chem. Phys. 120, 8898 (2004). JCPSA6 0021-9606 10.1063/1.1688758
D. Andrieux and P. Gaspard, J. Chem. Phys. 128, 154506 (2008). JCPSA6 0021-9606 10.1063/1.2894475
P. Gaspard, Chaos 30, 113103 (2020). CHAOEH 1054-1500 10.1063/5.0025350
G. Falasco, R. Rao, and M. Esposito, Phys. Rev. Lett. 121, 108301 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.108301
F. Avanzini, G. Falasco, and M. Esposito, Phys. Rev. E 101, 060102(R) (2020). PRESCM 2470-0045 10.1103/PhysRevE.101.060102
T. Aslyamov, F. Avanzini, E. Fodor, and M. Esposito, Phys. Rev. Lett. 131, 138301 (2023). PRLTAO 0031-9007 10.1103/PhysRevLett.131.138301
F. Avanzini, G. Falasco, and M. Esposito, J. Chem. Phys. 151, 234103 (2019). JCPSA6 0021-9606 10.1063/1.5126528
P. Kumar and G. Gangopadhyay, Phys. Rev. E 104, 014221 (2021). PRESCM 2470-0045 10.1103/PhysRevE.104.014221
T. L. Hill, J. Theor. Biol. 10, 442 (1966). JTBIAP 0022-5193 10.1016/0022-5193(66)90137-8
A. Wachtel, R. Rao, and M. Esposito, J. Chem. Phys. 157, 024109 (2022). JCPSA6 0021-9606 10.1063/5.0091035
S. Corra, M. T. Bakić, J. Groppi, M. Baroncini, S. Silvi, E. Penocchio, M. Esposito, and A. Credi, Nat. Nanotechnol. 17, 746 (2022). NNAABX 1748-3387 10.1038/s41565-022-01151-y
E. Penocchio, R. Rao, and M. Esposito, Nat. Commun. 10, 3865 (2019). NCAOBW 2041-1723 10.1038/s41467-019-11676-x
S. Amano, M. Esposito, E. Kreidt, D. A. Leigh, E. Penocchio, and B. M. W. Roberts, Nat. Chem. 14, 530 (2022). NCAHBB 1755-4330 10.1038/s41557-022-00899-z
E. Penocchio, F. Avanzini, and M. Esposito, J. Chem. Phys. 157, 034110 (2022). JCPSA6 0021-9606 10.1063/5.0094849
X. Yang, M. Heinemann, J. Howard, G. Huber, S. Iyer-Biswas, G. L. Treut, M. Lynch, K. L. Montooth, D. J. Needleman, S. Pigolotti, J. Rodenfels, P. Ronceray, S. Shankar, I. Tavassoly, S. Thutupalli, D. V. Titov, J. Wang, and P. J. Foster, Proc. Natl. Acad. Sci. U.S.A. 118, e2026786118 (2021). PNASA6 0027-8424 10.1073/pnas.2026786118
J. J. Heijnen and J. P. Van Dijken, Biotechnol. Bioeng. 39, 833 (1992). BIBIAU 0006-3592 10.1002/bit.260390806
D. Deamer and A. L. Weber, Cold Spring Harbor Perspect. Biol. 2, a004929 (2010). CSHPEU 1943-0264 10.1101/cshperspect.a004929
P. Adamski, M. Eleveld, A. Sood, Á. Kun, A. Szilágyi, T. Czárán, E. Szathmáry, and S. Otto, Nat. Rev. Chem. 4, 386 (2020). 10.1038/s41570-020-0196-x
P. L. Luisi, The Emergence of Life: From Chemical Origins to Synthetic Biology (Cambridge University Press, Cambridge, England, 2006).
E. Smith and H. J. Morowitz, The Origin and Nature of Life on Earth: The Emergence of the Fourth Geosphere (Cambridge University Press, Cambridge, England, 2016).
W.-H. Lin, E. Kussell, L.-S. Young, and C. Jacobs-Wagner, Proc. Natl. Acad. Sci. U.S.A. 117, 27795 (2020). PNASA6 0027-8424 10.1073/pnas.2013061117
P. R. Wills, S. A. Kauffman, B. M. Stadler, and P. F. Stadler, Bull. Math. Biol. 60, 1073 (1998). BMTBAP 0092-8240 10.1016/S0092-8240(98)90003-9
S. Iyer-Biswas, G. E. Crooks, N. F. Scherer, and A. R. Dinner, Phys. Rev. Lett. 113, 028101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.028101
P. Nandori and L.-S. Young, Proc. Natl. Acad. Sci. U.S.A. 119, e2214282119 (2022). PNASA6 0027-8424 10.1073/pnas.2214282119
S. Sarkar and J. L. England, Phys. Rev. E 100, 022414 (2019). PRESCM 2470-0045 10.1103/PhysRevE.100.022414
J. Unterberger and P. Nghe, J. Math. Biol. 85, 26 (2022). JMBLAJ 0303-6812 10.1007/s00285-022-01798-0
Asymptotic growth should be seen as the idealization of growth over a long timescale, as in practice other effects will always eventually manifest (see conclusion).
A. Sorrenti, J. Leira-Iglesias, A. Sato, and T. M. Hermans, Nat. Commun. 8, 15899 (2017). NCAOBW 2041-1723 10.1038/ncomms15899
R. Aris, Elementary Chemical Reactor Analysis (Butterworth-Heinemann, Boston, 1989), pp. 156-228.
K. Liu, A. Blokhuis, C. van Ewijk, A. Kiani, J. Wu, W. H. Roos, and S. Otto, Nat. Chem. 16, 79 (2024). NCAHBB 1755-4330 10.1038/s41557-023-01301-2
A. Blokhuis, D. Lacoste, and P. Gaspard, J. Chem. Phys. 148, 144902 (2018). JCPSA6 0021-9606 10.1063/1.5022697
G. Svehla, Pure Appl. Chem. 65, 2291 (1993). PACHAS 0033-4545 10.1351/pac199365102291
S. G. M. Srinivas, F. Avanzini, and M. Esposito, companion paper, Characterizing the conditions for indefinite growth in open chemical reaction networks, Phys. Rev. E 109, 064153 (2024). PRESCM 2470-0045 10.1103/PhysRevE.109.064153
F. Avanzini, SciPost Phys. Lect. Notes 80 (2024). 10.21468/SciPostPhysLectNotes.80
D. Angeli, in 2009 European Control Conference (ECC) (IEEE, 2009), pp. 649-657.
N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam, 2007).
T. Tomé and M. J. De Oliveira, Stochastic Dynamics and Irreversibility, Graduate Texts in Physics (Springer International Publishing, Cham, 2015).
D. F. Anderson, J. Math. Chem. 49, 2275 (2011). JMCHEG 0259-9791 10.1007/s10910-011-9886-4
M. Feinberg, Foundations of Chemical Reaction Network theory (Springer, New York, 2019), pp. 79-80.
M. Gopalkrishnan, E. Miller, and A. Shiu, SIAM J. Appl. Dyn. Syst. 13, 758 (2014). SJADAY 1536-0040 10.1137/130928170
A. Kamimura, Y. Sughiyama, and T. J. Kobayashi, Thermodynamic and stoichiometric laws ruling the fates of growing systems, arXiv:2312.14435.
Y. Sughiyama, A. Kamimura, D. Loutchko, and T. J. Kobayashi, Phys. Rev. Res. 4, 033191 (2022). PPRHAI 2643-1564 10.1103/PhysRevResearch.4.033191
E. Bigan, J. Steyaert, and S. Douady, Electron. Notes Theor. Comput. Sci. 316, 3 (2015). 10.1016/j.entcs.2015.06.007
Y. Kondo and K. Kaneko, Phys. Rev. E 84, 011927 (2011). PRESCM 1539-3755 10.1103/PhysRevE.84.011927
J. Bauermann, C. A. Weber, and F. Jülicher, Ann. Phys. (Amsterdam) 534, 2200132 (2022). APNYA6 0003-4916 10.1002/andp.202200132
A. Klosin, F. Oltsch, T. Harmon, A. Honigmann, F. Jülicher, A. A. Hyman, and C. Zechner, Science 367, 464 (2020). SCIEAS 0036-8075 10.1126/science.aav6691
A. Ianeselli, D. Tetiker, J. Stein, A. Kühnlein, C. B. Mast, D. Braun, and T.-Y. Dora Tang, Nat. Chem. 14, 32 (2022). NCAHBB 1755-4330 10.1038/s41557-021-00830-y