MEIBOHM, Jan Nicolas ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Massimiliano ESPOSITO
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
no
Language :
English
Title :
Minimum-dissipation principle for synchronized stochastic oscillators far from equilibrium
I. Prigogine and P. Glansdorff, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley-Interscience, New York, 1971).
D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, New York, 2014).
I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Charles C Thomas Publisher, Springfield, Illinois, 1955).
J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Mod. Phys. 48, 571 (1976) 0034-6861 10.1103/RevModPhys.48.571.
C. Y. Mou, J.-l. Luo, and G. Nicolis, Stochastic thermodynamics of nonequilibrium steady states in chemical reaction systems, J. Chem. Phys. 84, 7011 (1986) 0021-9606 10.1063/1.450623.
D. Forastiere, R. Rao, and M. Esposito, Linear stochastic thermodynamics, New J. Phys. 24, 083021 (2022) 1367-2630 10.1088/1367-2630/ac836b.
D. Forastiere, F. Avanzini, and M. Esposito, Dissipation in hydrodynamics from micro-to macroscale: wisdom from Boltzmann and stochastic thermodynamics, New J. Phys. 26, 063022 (2024) 10.1088/1367-2630/ad51a1.
L. Jiu-Li, C. Van den Broeck, and G. Nicolis, Stability criteria and fluctuations around nonequilibrium states, Z. Phys. B 56, 165 (1984) 10.1007/BF01469698.
G. Nicolis, Thermodynamic theory of stability, structure and fluctuations, Pure Appl. Chem. 22, 379 (1970) 10.1351/pac197022030379.
R. Landauer, Inadequacy of entropy and entropy derivatives in characterizing the steady state, Phys. Rev. A 12, 636 (1975) 0556-2791 10.1103/PhysRevA.12.636.
E. T. Jaynes, The minimum entropy production principle, Annu. Rev. Phys. Chem. 31, 579 (1980) 0066-426X 10.1146/annurev.pc.31.100180.003051.
G. Kirchhoff, Ueber die Anwendbarkeit der Formeln für die Intensitäten der galvanischen Ströme in einem Systeme linearer Leiter auf Systeme, die zum Theil aus nicht linearen Leitern bestehen, Ann. Phys. 151, 189 (1848) 0003-3804 10.1002/andp.18481511003.
U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys. 75, 126001 (2012) 0034-4885 10.1088/0034-4885/75/12/126001.
C. Van den Broeck and M. Esposito, Ensemble and trajectory thermodynamics: A brief introduction, Physica A 418, 6 (2015) 0378-4371 10.1016/j.physa.2014.04.035.
L. Peliti and S. Pigolotti, Stochastic Thermodynamics: An Introduction (Princeton University Press, Princeton, NJ, 2021).
G. Falasco and M. Esposito, Macroscopic stochastic thermodynamics, arXiv:2307.12406.
T. Herpich, J. Thingna, and M. Esposito, Collective power: Minimal model for thermodynamics of nonequilibrium phase transitions, Phys. Rev. X 8, 031056 (2018) 2160-3308 10.1103/PhysRevX.8.031056.
T. Herpich and M. Esposito, Universality in driven Potts models, Phys. Rev. E 99, 022135 (2019) 2470-0045 10.1103/PhysRevE.99.022135.
J. Meibohm and M. Esposito, companion paper, Small-amplitude synchronization in driven Potts models, Phys. Rev. E 110, 044114 (2024) 10.1103/PhysRevE.110.044114.
D. Ruelle, Positivity of entropy production in nonequilibrium statistical mechanics, J. Stat. Phys. 85, 1 (1996) 0022-4715 10.1007/BF02175553.
D. Daems and G. Nicolis, Entropy production and phase space volume contraction, Phys. Rev. E 59, 4000 (1999) 1063-651X 10.1103/PhysRevE.59.4000.
D. J. Searles and D. J. Evans, The fluctuation theorem and Green-Kubo relations, J. Chem. Phys. 112, 9727 (2000) 0021-9606 10.1063/1.481610.
D. J. Evans and G. P Morriss, Statistical Mechanics of Nonequilbrium Liquids (ANU Press, Canberra, ACT, 2007).
A. Imparato, Stochastic thermodynamics in many-particle systems, New J. Phys. 17, 125004 (2015) 1367-2630 10.1088/1367-2630/17/12/125004.
S.-ichi Sasa, Collective dynamics from stochastic thermodynamics, New J. Phys. 17, 045024 (2015) 1367-2630 10.1088/1367-2630/17/4/045024.
P. D. Pinto, A. L. A. Penna, and F. A. Oliveira, Critical behavior of noise-induced phase synchronization, Europhys. Lett. 117, 50009 (2017) 0295-5075 10.1209/0295-5075/117/50009.
M. Suñé and A. Imparato, Out-of-equilibrium clock model at the verge of criticality, Phys. Rev. Lett. 123, 070601 (2019) 0031-9007 10.1103/PhysRevLett.123.070601.
M. Chatzittofi, R. Golestanian, and J. Agudo-Canalejo, Collective synchronization of dissipatively-coupled noise-activated processes, New J. Phys. 25, 093014 (2023) 1367-2630 10.1088/1367-2630/acf2bc.
D. Zhang, Y. Cao, Q. Ouyang, and Y. Tu, The energy cost and optimal design for synchronization of coupled molecular oscillators, Nat. Phys. 16, 95 (2020) 1745-2473 10.1038/s41567-019-0701-7.
L. Guislain and E. Bertin, Discontinuous phase transition from ferromagnetic to oscillating states in a nonequilibrium mean-field spin model, Phys. Rev. E 109, 034131 (2024) 2470-0045 10.1103/PhysRevE.109.034131.
Y. Izumida, H. Kori, and U. Seifert, Energetics of synchronization in coupled oscillators rotating on circular trajectories, Phys. Rev. E 94, 052221 (2016) 2470-0045 10.1103/PhysRevE.94.052221.
These limits should be understood as conservative mathematical statements. We find numerically that Eqs. (12), (16), and (17) hold also for moderate (Equation presented) and (Equation presented).
We express all entropy measures in dimensionless form, i.e., in units of (Equation presented).
M. Baiesi and G. Falasco, Inflow rate, a time-symmetric observable obeying fluctuation relations, Phys. Rev. E 92, 042162 (2015) 1539-3755 10.1103/PhysRevE.92.042162.
E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002).
See Ref. [19] and the Supplemental Material [38] for numerical confirmations at (Equation presented) and (Equation presented).
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.110.L042102 for videos that illustrate the minimum-dissipation principle.