[en] The KRAS oncogene drives many common and highly fatal malignancies. These include pancreatic, lung, and colorectal cancer, where various activating KRAS mutations have made the development of KRAS inhibitors difficult. Here we identify the scaffold protein SH3 and multiple ankyrin repeat domain 3 (SHANK3) as a RAS interactor that binds active KRAS, including mutant forms, competes with RAF and limits oncogenic KRAS downstream signalling, maintaining mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity at an optimal level. SHANK3 depletion breaches this threshold, triggering MAPK/ERK signalling hyperactivation and MAPK/ERK-dependent cell death in KRAS-mutant cancers. Targeting this vulnerability through RNA interference or nanobody-mediated disruption of the SHANK3-KRAS interaction constrains tumour growth in vivo in female mice. Thus, inhibition of SHANK3-KRAS interaction represents an alternative strategy for selective killing of KRAS-mutant cancer cells through excessive signalling.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Lilja, Johanna; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
Kaivola, Jasmin ; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
Conway, James R W ; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
Vuorio, Joni ; Department of Physics, University of Helsinki, Helsinki, Finland
Parkkola, Hanna ; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
Roivas, Pekka; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland ; Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
Dibus, Michal ; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
Chastney, Megan R ; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
Varila, Taru; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
Jacquemet, Guillaume ; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland ; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland ; Turku Bioimaging, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland ; InFLAMES Research Flagship Center, Åbo Akademi University, FI-20520, Turku, Finland
Peuhu, Emilia ; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland ; Institute of Biomedicine, Cancer Research Laboratory FICAN West, University of Turku, FI-20520, Turku, Finland
Wang, Emily; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
Pentikäinen, Ulla; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland ; Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
Martinez D Posada, Itziar; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
Hamidi, Hellyeh ; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
Najumudeen, Arafath K ; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland ; CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
Sansom, Owen J ; CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK ; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
Barsukov, Igor L ; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
ABANKWA, Daniel ; University of Luxembourg ; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
Vattulainen, Ilpo ; Department of Physics, University of Helsinki, Helsinki, Finland
Salmi, Marko; Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland ; MediCity Research Laboratory, University of Turku, FI-20520, Turku, Finland ; InFLAMES Research Flagship Center, University of Turku, FI-20520, Turku, Finland
Ivaska, Johanna ; Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland. Johanna.ivaska@utu.fi ; InFLAMES Research Flagship Center, University of Turku, FI-20520, Turku, Finland. Johanna.ivaska@utu.fi ; Department of Life Technologies, University of Turku, Turku, Finland. Johanna.ivaska@utu.fi ; Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland. Johanna.ivaska@utu.fi ; Western Finnish Cancer Center, University of Turku, Turku, FI-20520, Finland. Johanna.ivaska@utu.fi
We thank P. Laasola, J. Siivonen, E-M. Vesilahti, M. Miihkinen, S. Salomaa and A. Isomursu for technical assistance and scientific discussion, the Ivaska lab for critical reading and feedback on the manuscript and O. Pentik\u00E4inen for protein complex modelling. The Cell Imaging and Cytometry Core (Turku Bioscience Centre, University of Turku) and Turku Centre for Disease Modelling (TCDM), both supported by Biocenter Finland, the Euro-BioImaging Finnish Node (Turku Finland), the University of Turku Histocore and Genome Editing core are acknowledged for services, instrumentation, and expertise. We also gratefully acknowledge CSC \u2013 IT Center for Science (Espoo, Finland) for providing ample computing resources. This work was supported by the Research Council of Finland through the following programs: an InFLAMES Flagship Programme (337530, UTU and 337531, \u00C5bo Akademi), Research project grants (325464, J.I., and 331349, I.V.), Research Fellowships (338537 G.J. and 323096 E.P.), the CoE for Biological Barrier Mechanics and Disease (346131 & 364182, J.I., and 346135 & 364185, I.V.,). Additional funding was provided by an ERC consolidator (615258, J.I.) and a proof of concept grant (899155, J.I.), the Sigrid Juselius Foundation (J.I., G.J., E.P., and I.V.), the Finnish Cultural Foundation (J.L. and E.P), the Cancer Foundation Finland (J.I., M.S., G.J., and I.V.), the Frontier Science Program (RGP0059/2019, I.V.), the Helsinki Institute of Life Science (HiLIFE) Fellow program (I.V.), the Lundbeck Foundation (I.V.) and a Novo Nordisk pre-seed grant (J.I.). J.L., and J.K., were supported by the Turku Doctoral Programme of Molecular Medicine (TuDMM), J.L by the Instrumentarium Foundation, the Orion Research Foundation Sr and the K. Albin Johansson Foundation, and P.R. by the Drug Research Doctoral Programme at the University of Turku. J.R.W.C. was supported by the European Union\u2019s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement [841973] and a Research Council of Finland postdoctoral research grant (338585), M.D. by the European Union\u2019s Horizon Europe research and innovation programme under Marie Sklodowska-Curie grant [101108089], M.C. by a Research Council of Finland postdoctoral research grant (343239) and AKN by CRUK Scotland Institute core funding (A17196, and A31287 - awarded to O.J.S.,). O.J.S., was supported by CRUK grants (A21139, A12481, A17196 and A31287) and an ERC Starting grant (311301).We thank P. Laasola, J. Siivonen, E-M. Vesilahti, M. Miihkinen, S. Salomaa and A. Isomursu for technical assistance and scientific discussion, the Ivaska lab for critical reading and feedback on the manuscript and O. Pentik\u00E4inen for protein complex modelling. The Cell Imaging and Cytometry Core (Turku Bioscience Centre, University of Turku) and Turku Centre for Disease Modelling (TCDM), both supported by Biocenter Finland, the Euro-BioImaging Finnish Node (Turku Finland), the University of Turku Histocore and Genome Editing core are acknowledged for services, instrumentation, and expertise. We also gratefully acknowledge CSC \u2013 IT Center for Science (Espoo, Finland) for providing ample computing resources. This work was supported by the Research Council of Finland through the following programs: an InFLAMES Flagship Programme (337530, UTU and 337531, \u00C5bo Akademi), Research project grants (325464, J.I., and 331349, I.V.), Research Fellowships (338537\u2009G.J. and 323096 E.P.), the CoE for Biological Barrier Mechanics and Disease (346131 & 364182, J.I., and 346135 & 364185, I.V.,). Additional funding was provided by an ERC consolidator (615258, J.I.) and a proof of concept grant (899155, J.I.), the Sigrid Juselius Foundation (J.I., G.J., E.P., and I.V.), the Finnish Cultural Foundation (J.L. and E.P), the Cancer Foundation Finland (J.I., M.S., G.J., and I.V.), the Frontier Science Program (RGP0059/2019, I.V.), the Helsinki Institute of Life Science (HiLIFE) Fellow program (I.V.), the Lundbeck Foundation (I.V.) and a Novo Nordisk pre-seed grant (J.I.). J.L., and J.K., were supported by the Turku Doctoral Programme of Molecular Medicine (TuDMM), J.L by the Instrumentarium Foundation, the Orion Research Foundation Sr and the K. Albin Johansson Foundation, and P.R. by the Drug Research Doctoral Programme at the University of Turku. J.R.W.C. was supported by the European Union\u2019s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement [841973] and a Research Council of Finland postdoctoral research grant (338585), M.D. by the European Union\u2019s Horizon Europe research and innovation programme under Marie Sklodowska-Curie grant [101108089], M.C. by a Research Council of Finland postdoctoral research grant (343239) and AKN by CRUK Scotland Institute core funding (A17196, and A31287 - awarded to O.J.S.,). O.J.S., was supported by CRUK grants (A21139, A12481, A17196 and A31287) and an ERC Starting grant (311301).
I.A. Prior F.E. Hood J.L. Hartley The frequency of ras mutations in cancer Cancer Res. 2020 80 2969 2974 1:CAS:528:DC%2BB3cXhvVegsrvM 32209560 7367715
D.K. Simanshu D.V. Nissley F. McCormick RAS proteins and their regulators in human disease Cell 2017 170 17 33 1:CAS:528:DC%2BC2sXhtFSqsLfP 28666118 5555610
R.A. DeStefanis J.D. Kratz P.B. Emmerich D.A. Deming Targeted therapy in metastatic colorectal cancer: current standards and novel agents in review Curr. Colorectal Cancer Rep. 2019 15 61 69 31130830 6528813
A.M. Waters C.J. Der KRAS: The critical driver and therapeutic target for pancreatic cancer Cold Spring Harb. Perspect. Med. 2018 8 a031435 29229669 5995645
R. Salgia R. Pharaon I. Mambetsariev A. Nam M. Sattler The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC) Cell Rep. Med. 2021 2 100186 1:CAS:528:DC%2BB38XhvFWlu7fL 33521700 7817862
R.L. Siegel K.D. Miller H.E. Fuchs A. Jemal Cancer Statistics, 2021 CA Cancer J. Clin. 2021 71 7 33 33433946
I.R. Vetter A. Wittinghofer The guanine nucleotide-binding switch in three dimensions Science 2001 294 1299 1304 2001Sci..294.1299V 1:CAS:528:DC%2BD3MXotlKnu70%3D 11701921
A.D. Cox C.J. Der Ras history: the saga continues Small GTPases 2010 1 2 27 21686117 3109476
M. Drosten M. Barbacid Targeting the MAPK pathway in KRAS-driven tumors Cancer Cell 2020 37 543 550 1:CAS:528:DC%2BB3cXntlSis70%3D 32289276
C.A. Stalnecker C.J. Der RAS, wanted dead or alive: advances in targeting RAS mutant cancers Sci. Signal 2020 13 eaay6013 1:CAS:528:DC%2BB3cXlslyls7g%3D 32209699 7393681
J.M. Ostrem U. Peters M.L. Sos J.A. Wells K.M. Shokat K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions Nature 2013 503 548 551 2013Natur.503.548O 1:CAS:528:DC%2BC3sXhvVGqs7jO 24256730 4274051
J.B. Fell et al. Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer J. Med. Chem. 2020 63 6679 6693 1:CAS:528:DC%2BB3cXmtlCntb4%3D 32250617
D.S. Hong et al. KRASG12C inhibition with sotorasib in advanced solid tumors N. Engl. J. Med. 2020 383 1207 1217 1:CAS:528:DC%2BB3cXhvFalu7rL 32955176 7571518
J. Canon et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity Nature 2019 575 217 223 2019Natur.575.217C 1:CAS:528:DC%2BC1MXitV2hsb7F 31666701
B.A. Lanman et al. Discovery of a covalent Inhibitor of KRASG12C (AMG 510) for the treatment of solid tumors J. Med. Chem. 2020 63 52 65 1:CAS:528:DC%2BC1MXitlGitrrK 31820981
M.R. Janes et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor Cell 2018 172 578 589.e17 1:CAS:528:DC%2BC1cXislyisb8%3D 29373830
Z. Mao et al. KRAS(G12D) can be targeted by potent inhibitors via formation of salt bridge Cell Discov. 2022 8 5 1:CAS:528:DC%2BB38XhvFGntLY%3D 35075146 8786924
Z. Zhang et al. GTP-state-selective cyclic peptide ligands of K-ras(G12D) block its interaction with Raf ACS Cent. Sci. 2020 6 1753 1761 1:CAS:528:DC%2BB3cXhvV2ls7vN 33145412 7596874
M. Molina-Arcas A. Samani J. Downward Drugging the undruggable: advances on RAS targeting in cancer Genes (Basel) 2021 12 899 1:CAS:528:DC%2BB3MXhslWgtL%2FM 34200676
F. Di Nicolantonio et al. Precision oncology in metastatic colorectal cancer - from biology to medicine Nat. Rev. Clin. Oncol. 2021 18 506 525 33864051
M.M. Awad et al. Acquired resistance to KRASG12C inhibition in cancer N. Engl. J. Med. 2021 384 2382 2393 1:CAS:528:DC%2BB3MXhsVSrtL3J 34161704 8864540
N. Tanaka et al. Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation Cancer Discov. 2021 11 1913 1922 1:CAS:528:DC%2BB3MXit1Sgsb3N 33824136 8338755
Y. Zhao et al. Diverse alterations associated with resistance to KRAS(G12C) inhibition Nature 2021 599 679 683 2021Natur.599.679Z 1:CAS:528:DC%2BB3MXisVOltLrJ 34759319 8887821
M.H. Hofmann D. Gerlach S. Misale M. Petronczki N. Kraut Expanding the reach of precision oncology by drugging All KRAS mutants Cancer Discov. 2022 12 924 937 1:CAS:528:DC%2BB38Xht1Git73I 35046095 9394389
D. Kim et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth Nature 2023 619 160 166 2023Natur.619.160K 1:CAS:528:DC%2BB3sXhtFaqtrzM 37258666 10322706
M.H. Hofmann et al. BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition Cancer Discov. 2021 11 142 157 1:CAS:528:DC%2BB3MXmvVaksrY%3D 32816843
D.L. Kerr F. Haderk T.G. Bivona Allosteric SHP2 inhibitors in cancer: targeting the intersection of RAS, resistance, and the immune microenvironment Curr. Opin. Chem. Biol. 2021 62 1 12 1:CAS:528:DC%2BB3MXosVWkuw%3D%3D 33418513
R.J. Nichols et al. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers Nat. Cell Biol. 2018 20 1064 1073 1:CAS:528:DC%2BC1cXhsV2isLnP 30104724 6115280
N. Bery A. Miller T. Rabbitts A potent KRAS macromolecule degrader specifically targeting tumours with mutant KRAS Nat. Commun. 2020 11 2020NatCo.11.3233B 1:CAS:528:DC%2BB3cXhtlSitr3F 32591521 7319959
N. Gutierrez-Prat et al. DUSP4 protects BRAF- and NRAS-mutant melanoma from oncogene overdose through modulation of MITF Life Sci. Alliance 2022 5 e202101235 1:CAS:528:DC%2BB38XhsFSks7%2FP 35580987 9113946
T. Ito et al. Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers Nat. Genet 2021 53 1664 1672 1:CAS:528:DC%2BB3MXis1KhsLnK 34857952
G.P. Leung et al. Hyperactivation of MAPK Signaling Is Deleterious to RAS/RAF-mutant Melanoma Mol. Cancer Res. 2019 17 199 211 1:CAS:528:DC%2BC1MXotFeit7c%3D 30201825
L. Chang et al. Systematic profiling of conditional pathway activation identifies context-dependent synthetic lethalities Nat. Genet 2023 55 1709 1720 1:CAS:528:DC%2BB3sXhvFyms73E 37749246
J. Lilja et al. SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras Nat. Cell Biol. 2017 19 292 305 1:CAS:528:DC%2BC2sXltVWnsrs%3D 28263956 5386136
Q. Cai T. Hosokawa M. Zeng Y. Hayashi M. Zhang Shank3 binds to and stabilizes the active form of Rap1 and HRas GTPases via its NTD-ANK tandem with distinct mechanisms Structure 2020 28 290 300.e4 1:CAS:528:DC%2BC1MXisVyhtL3L 31879129
M. Sheng E. Kim The Shank family of scaffold proteins J. Cell Sci. 2000 113 1851 1856 1:CAS:528:DC%2BD3cXksVKnsb4%3D 10806096
S.I. Salomaa et al. SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling Curr. Biol. 2021 31 4956 4970.e9 1:CAS:528:DC%2BB3MXitFKqtb%2FO 34610274
J.M. Dempster et al. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets Nat. Commun. 2019 10 2019NatCo.10.5817D 1:CAS:528:DC%2BC1MXisVyrtrvE 31862961 6925302
G.S. Cowley et al. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies Sci. Data 2014 1 1:CAS:528:DC%2BC2cXhs12nt7zE 25984343 4432652
S. Rezaei Adariani et al. A comprehensive analysis of RAS-effector interactions reveals interaction hotspots and new binding partners J. Biol. Chem. 2021 296 1:CAS:528:DC%2BB3MXhtFGmsbvK 33930461 8163975
N. Nassar et al. Ras/Rap effector specificity determined by charge reversal Nat. Struct. Biol. 1996 3 723 729 1:CAS:528:DyaK28XkvVWjtbY%3D 8756332
J.F. Hancock H. Paterson C.J. Marshall A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane Cell 1990 63 133 139 1:CAS:528:DyaK3cXmt1KltLs%3D 2208277
Z. Fang et al. Multivalent assembly of KRAS with the RAS-binding and cysteine-rich domains of CRAF on the membrane Proc. Natl Acad. Sci. USA 2020 117 12101 12108 2020PNAS.11712101F 1:CAS:528:DC%2BB3cXhtlSlsbjO 32414921 7275734
C. Guzmán et al. The efficacy of raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer-specific nanoclustering J. Biol. Chem. 2014 289 9519 9533 24569991 3975003
A.M. Unni et al. Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells Elife 2018 7 30475204 6298772
E. Cho H.J. Lou L. Kuruvilla D.A. Calderwood B.E. Turk PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK Cell Rep. 2021 34 108928 1:CAS:528:DC%2BB3MXnvFChsrg%3D 33789117 8068315
O. Timofeev P. Giron S. Lawo M. Pichler M. Noeparast ERK pathway agonism for cancer therapy: evidence, insights, and a target discovery framework npj Precis. Onc. 2024 8 1 16
T. Kudo et al. Live-cell measurements of kinase activity in single cells using translocation reporters Nat. Protoc. 2018 13 155 169 1:CAS:528:DC%2BC2sXitVWnsLnM 29266096
L. Wang et al. A kinome-wide RNAi screen identifies ERK2 as a druggable regulator of Shank3 stability Mol. Psychiatry 2020 25 2504 2516 1:CAS:528:DC%2BC1MXhtVyjtr3P 30696942
T.K. Hayes et al. Long-term ERK inhibition in KRAS-mutant pancreatic cancer is associated with MYC degradation and senescence-like growth suppression Cancer Cell 2016 29 75 89 1:CAS:528:DC%2BC2MXitV2msrvO 26725216
M.H. Dias R. Bernards Playing cancer at its own game: activating mitogenic signaling as a paradoxical intervention Mol. Oncol. 2021 15 1975 1985 1:CAS:528:DC%2BB3MXhvVKht73N 33955157 8333773
K.C. Wood Hyperactivation of oncogenic driver pathways as a precision therapeutic strategy Nat. Genet. 2023 55 1613 1614 1:CAS:528:DC%2BB3sXhvFyms73F 37749245
E.C. Nakajima et al. FDA approval summary: sotorasib for KRAS G12C-mutated metastatic NSCLC Clin. Cancer Res. 2022 28 1482 1486 1:CAS:528:DC%2BB38XhtlGhtb7O 34903582 9012672
I. Jovčevska S. Muyldermans The therapeutic potential of nanobodies BioDrugs 2020 34 11 26 31686399
S.T. Diepstraten et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs Nat. Rev. Cancer 2022 22 45 64 1:CAS:528:DC%2BB3MXit1Ohs7%2FJ 34663943
H. Ledford Gene-silencing technology gets first drug approval after 20 year wait Nature 2018 560 291 292 2018Natur.560.291L 1:CAS:528:DC%2BC1cXhsFahtrvO 30108348
A. Honor S.R. Rudnick H.L. Bonkovsky Givosiran to treat acute porphyria Drugs Today (Barc.) 2021 57 47 59 1:STN:280:DC%2BB3snltVGhtg%3D%3D 33594389
V.N. Shah L. Pyle Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1 N. Engl. J. Med. 2021 385 e69 1:CAS:528:DC%2BB3MXisFCku7jE 34758264
Kreienkamp, H.-J. Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp. Pharmacol. 186, 365–380 (2008).
D. Abankwa et al. A novel switch region regulates H-ras membrane orientation and signal output EMBO J. 2008 27 727 735 1:CAS:528:DC%2BD1cXislGrs70%3D 18273062 2265749
A.K. Najumudeen et al. Cancer stem cell drugs target K-ras signaling in a stemness context Oncogene 2016 35 5248 5262 1:CAS:528:DC%2BC28XktVOrsr8%3D 26973241 5057041
K. Vuoriluoto et al. Vimentin regulates EMT induction by slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer Oncogene 2011 30 1436 1448 1:CAS:528:DC%2BC3cXhtl2jtrzK 21057535
V. Härmä et al. A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses PLoS ONE 2010 5 e10431 2010PLoSO..510431H 20454659 2862707
C. Guzmán M. Bagga A. Kaur J. Westermarck D. Abankwa ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays PLoS ONE 2014 9 e92444 2014PLoSO..992444G 24647355 3960247
J. Schindelin et al. Fiji: an open-source platform for biological-image analysis Nat. Methods 2012 9 676 682 1:CAS:528:DC%2BC38XhtVKnurbJ 22743772
J. John et al. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21 Biochemistry 1990 29 6058 6065 1:CAS:528:DyaK3cXktF2lt7o%3D 2200519
M.J. Abraham et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers SoftwareX 2015 1–2 19 25 2015SoftX..1..19A
J. Huang et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins Nat. Methods 2017 14 71 73 1:CAS:528:DC%2BC28XhvVSiu77I 27819658
S. Jo T. Kim V.G. Iyer W. Im CHARMM-GUI: a web-based graphical user interface for CHARMM J. Comput. Chem. 2008 29 1859 1865 1:CAS:528:DC%2BD1cXosVKksbc%3D 18351591
J. Lee et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field J. Chem. Theory Comput 2016 12 405 413 1:CAS:528:DC%2BC2MXhvVWru7nI 26631602
P. Mark L. Nilsson Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001 105 9954 9960 1:CAS:528:DC%2BD3MXntlWrurs%3D
W.F. Van Gunsteren H.J.C. Berendsen A leap-frog algorithm for stochastic dynamics Mol. Simul. 1988 1 173 185
B. Hess H. Bekker H.J.C. Berendsen J.G.E.M. Fraaije LINCS: A linear constraint solver for molecular simulations J. Comput. Chem. 1997 18 1463 1472 1:CAS:528:DyaK2sXlvV2nu7g%3D
M. Parrinello A. Rahman Polymorphic transitions in single crystals: a new molecular dynamics method J. Appl. Phys. 1981 52 7182 7190 1981JAP..52.7182P 1:CAS:528:DyaL38XislSnuw%3D%3D
J. Goedhart SuperPlotsOfData-a web app for the transparent display and quantitative comparison of continuous data from different conditions Mol. Biol. Cell 2021 32 470 474 1:CAS:528:DC%2BB3MXhtFOmu7fP 33476183 8101441