[en] In traditional financial markets, front-running is a well-structured phenomenon. It represents a form of privileged actors utilizing knowledge or power advantages to extract undue profit at the cost of other stakeholders. Various mitigation strategies have emerged, ranging from market design to regulatory measures. More recently, a similar and substantially richer variety of means to gain unethical profit from power asymmetries has appeared in the context of blockchain-based decentralized applications. This phenomenon is called “maximal extractable value” (MEV). Despite the decentralized nature and inherent transparency of blockchain ledgers, MEV is particularly prevalent and challenging to mitigate. While related work in computer science and algorithmic game theory has already identified several different ways in which MEV manifests in decentralized finance (DeFi) and outlined partial solution approaches, a discussion of its impacts in the information systems (IS) domain is still absent. A holistic definition of MEV and how it can be exploited is necessary for the discussion of its potential implications for blockchain-based IS for businesses and public institutions. This paper conducts a systematic literature review to close this gap. It consolidates the diverging definitions of MEV and provides a categorization of the different ways in which it can manifest. As such, we synthesize and review the existing state of knowledge on MEV and point to undiscovered areas relevant to decentralized electronic markets in the form of a research agenda.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > FINATRAX - Digital Financial Services and Cross-organizational Digital Transformations NCER-FT - FinTech National Centre of Excellence in Research
Disciplines :
Gestion des systèmes d’information Sciences informatiques
Auteur, co-auteur :
Gramlich, Vincent ; Branch Business Information Systems Engineering, Fraunhofer FIT, Bayreuth, Germany
Jelito, Dennis; University of Bayreuth, Bayreuth, Germany
SCHÖNRICH-SEDLMEIR, Johannes ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Maximal extractable value: Current understanding, categorization, and open research questions
Date de publication/diffusion :
03 octobre 2024
Titre du périodique :
Electronic Markets
ISSN :
1019-6781
eISSN :
1422-8890
Maison d'édition :
Springer Science and Business Media Deutschland GmbH
FNR16326754 - Privacy-preserving Tokenisation Of Artworks, 2021 (01/06/2022-31/05/2025) - Gilbert Fridgen FNR14783405 - Fintech/Regtech In Space For Trustful Autonomous Robotic Interaction, 2020 (01/07/2021-30/06/2024) - Gilbert Fridgen
Organisme subsidiant :
FNR - Luxembourg National Research Fund Banque et Caisse d’Épargne de l’État, Luxembourg (Spuerkeess) Directorate-General for Financial Stability, Financial Services and Capital Markets Union (DG FISMA) Bavarian Ministry of Economic Affairs, Regional Development and Energy
Subventionnement (détails) :
Open Access funding enabled and organized by Projekt DEAL. This research was funded in part by the Bavarian Ministry of Economic Affairs, Regional Development and Energy through the project "Fraunhofer Blockchain Center (20-3066-2-6-14)" and the Luxembourg National Research Fund (FNR) in the FiReSPArX (grant reference 14783405) and PABLO (grant reference 16326754) projects, as well as Banque et Caisse d’Épargne de l’État, Luxembourg (Spuerkeess) and the Directorate-General for Financial Stability, Financial Services and Capital Markets Union (DG FISMA).
Akerlof, G. A. (1970). The market for “lemons”: Quality uncertainty and the market mechanism. The Quarterly Journal of Economics, 84 (3), 235–251. https://doi.org/10.2307/1879431
R. Alt E. Wende Blockchain technology in energy markets - An interview with the European Energy Exchange Electronic Markets 2020 30 2 325 330 10.1007/s12525-020-00423-6
Angeris, G., Chitra, T., Diamonds, T., &; Kulkarni, K. (2023). The specter (and spectra) of miner extractable value. https://arXiv.org/abs/2310.07865
Arrow, K.J. (1963). Uncertainty and the welfare economics of medical care. American Economic Review, 53 (5), 941–973. https://www.jstor.org/stable/1812044
Arulprakash, M., & Jebakumar, R. (2022). Commit-reveal strategy to increase the transaction confidentiality in order to counter the issue of front running in blockchain. AIP Conference Proceedings, 2460 (1). https://doi.org/10.1063/5.0095700
Aune, R.T., Krellenstein, A., O’Hara, M., & Slama, O. (2017). Footprints on a blockchain: Trading and information leakage in distributed ledgers. The Journal of Trading12, 5–13. https://doi.org/10.3905/jot.2017.12.3.005
Bahrani, M., Garimidi, P., Roughgarden, T. (2023). Transaction fee mechanism design with active block producers. https://doi.org/10.48550/arXiv.2307.01686
Bahrani, M., Garimidi, P.,; Roughgarden, T. (2024). Centralization in block building and proposer-builder separation. https://arxiv.org/abs/2401.12120
Barczentewicz, M. (2023). MEV on Ethereum: A policy analysis. https://doi.org/10.2139/ssrn.4332703
Barczentewicz, M., Sarch, A.F., & Vasan, N. (2023). Battle of the crypto bots: Automated transaction copying in decentralized finance. https://ssrn.com/abstract=4411448
Bartoletti, M., Chiang, J.H., & Lluch Lafuente, A. (2022). Maximizing extractable value from automated market makers. Financial cryptography and data security: 26th international conference 3–19. https://doi.org/10.1007/978-3-031-18283-9_1
Baum, C., yu Chiang, J.H., David, B.,Frederiksen, T.K., Gentile, L. (2023). SoK: Mitigation of front-running in decentralized finance. Financial cryptography and data security: 27th international conference. [SPACE] https://doi.org/10.1007/978-3-031-32415-4_17
Bentov, I., Ji, Y., Zhang, F., Breidenbach, L., Daian, P., & Juels, A. (2019). Tesseract: Real-time cryptocurrency exchange using trusted hardware. Proceedings of the acm sigsac conference on computer and communications security 1521–1538. https://doi.org/10.1145/3319535.3363221.
bert (2023). Post mortem: April 3rd, 2023 MEV-boost relay incident and related timing issue. Retrieved February 16, 2024 https://collective.flashbots.net/t/post-mortem-april-3rd-2023-mev-boost-relay-incident-and-related-timing-issue/1540
Blackshear, S., Chalkias, K., Chatzigiannis, P., Faizullabhoy, R., Khaburzaniya, I., Kogias, E.K., & Zakian, T. (2021). Reactive key-loss protection in blockchains. Financial cryptography and data security: 25th international conference 431–450. https://doi.org/10.1007/978-3-662-63958-0_34
Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., & Felten, E.W. (2015). SoK: Research perspectives and challenges for Bitcoin and cryptocurrencies. Symposium on security and privacy 104–121. https://doi.org/10.1109/SP.2015.14
L. Breidenbach C. Cachin B. Chan A. Coventry S. Ellis A. Juels et al. Chainlink 2.0: Next steps in the evolution of decentralized oracle networks Chainlink Labs 2021 1 1 136
Breidenbach, L., Daian, P., Tramer, F., & Juels, A. (2018). Enter the Hydra: Towards principled bug bounties and exploit-resistant smart contracts. Proceedings of the 27th usenix security symposium 1335–1352. https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-breidenbach.pdf
E. Budish P. Cramton J. Shim The high-frequency trading arms race: Frequent batch auctions as a market design response The Quarterly Journal of Economics 2015 130 4 1547 1621 10.1093/qje/qjv027
Bünz, B., Aal, S., Zamani, M., & Boneh, D. (2020). Zether: Towards privacy in a smart contract world. Financial cryptography and data security: 24th international conference 423–443. https://doi.org/10.1007/978-3-030-51280-4_23
Butijn, BJ., Tamburri, D.A., & van den Heuvel, WJ. (2020). Blockchains: A systematic multivocal literature review. ACM Computing Surveys, 53 (3). https://doi.org/10.1145/3369052
Capretto, M., Ceresa, M., Anta, A. F., Russo, A., & Sánchez, C. (2022). Setchain: Improving blockchain scalability with Byzantine distributed sets and barriers. International Conference on Blockchain, 87–96. https://doi.org/10.1109/Blockchain55522.2022.00022
Carranti, D. (2022). Flash Boys 3.0: Is MEV a choice?. https://ssrn.com/abstract=4351266
Carrillo, F., & Hu, E. (2023). MEV in fixed gas price blockchains: Terra Classic as a case of study. https://arxiv.org/abs/2303.04242
Chi, T., He, N., Hu, X., &; Wang, H. (2024). Remeasuring the arbitrage and sandwich attacks of maximal extractable value in Ethereum. https://doi.org/10.48550/arXiv.2405.17944
Chitra, T. (2023). Towards a theory of maximal extractable value II: Uncertainty. https://arXiv.org/abs/2309.14201
Chitra, T.,; Kulkarni, K. (2022). Improving proof of stake economic security via MEV redistribution. Proceedings of the ccs workshop on decentralized finance and security. https://doi.org/10.1145/3560832.3564259
Churiwala, D., Krishnamachari, B. (2022). Comma protocol: Towards complete mitigation of maximal extractable value (MEV) attacks. https://doi.org/10.48550/arXiv.2211.14985
Ciampi, M., Ishaq, M., Magdon-Ismail, M., Ostrovsky, R., & Zikas, V. (2022). FairMM: A fast and frontrunning-resistant crypto market-maker. Cyber security, cryptology, and machine learning: 6th international symposium 428–446. https://doi.org/10.1007/978-3-031-07689-3_31.
Clapham, B., Jakobs, J., Schmidt, J., Gomber, P., & Muntermann, J. (2023). A taxonomy of violations in digital asset markets. 44th international conference on information systems. https://aisel.aisnet.org/icis2023/blockchain/blockchain/12/
Coindesk (2024). Brothers accused of \$ 25m Ethereum exploit as U.S. reveals fraud charges. Retrieved June 11, 2024, https://www.coindesk.com/policy/2024/05/15/brothers-accused-of-25m-ethereum-exploit-as-us-reveals-fraud-charges/
Constantinescu, A., Ghinea, D., Heimbach, L., Wang, Z.,Wattenhofer, R. (2023). A fair and resilient decentralized clock network for transaction ordering. https://doi.org/10.48550/arXiv.2305.05206
Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., & Juels, A. (2020). Flash Boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and consensus instability. Symposium on security and privacy 910–927. https://doi.org/10.1109/SP40000.2020.00040
Dailycoin (2024). Why first Ethereum MEV case is seen as a double standard. Retrieved June 11, 2024, https://dailycoin.com/why-first-ethereum-mev-case-is-seen-as-a-double-standard/
DeFiLlama (2024). Retrieved June 10, 2024, https://defillama.com/
Department of Justice (2024). Two brothers arrested for attacking Ethereum blockchain and stealing \$ 25m in cryptocurrency. Retrieved June 11, 2024 https://www.justice.gov/opa/pr/two-brothers-arrested-attacking-ethereum-blockchain-and-stealing-25m-cryptocurrency
Doweck, Y.,; Eyal, I. (2020). Multi-party timed commitments. https://arxiv.org/abs/2005.04883
Droll, J., Stengele, O., & Hartenstein, H. (2024). Unpredictable transaction arrangement for MEV mitigation in Ethereum. Proceedings of the 6th international conference on blockchain and cryptocurrency. https://doi.org/10.1109/ICBC59979.2024.10634470
B. Egelund-Müller M. Elsman F. Henglein O. Ross Automated execution of financial contracts on blockchains Business & Information Systems Engineering 2017 59 6 457 467 10.1007/s12599-017-0507-z
Eigelshoven, F., Ullrich, A., & Parry, D.A. (2021). Cryptocurrency market manipulation: A systematic literature review. 42nd international conference on information systems. https://aisel.aisnet.org/icis2021/fintech/fintech/1/
Eskandari, S., Moosavi, S., & Clark, J. (2020). SoK: Transparent dishonesty: Front-running attacks on blockchain. Financial cryptography and data security: 24th international conference 170–189. https://doi.org/10.1007/978-3-030-43725-1_13
European Parliament (2023). Regulation on markets in crypto-assets (mica). Retrieved June 21, 2024 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R1114
European Securities and Market Authority (2024). Consultation paper on the technical standards specifying certain requirements of MiCA. Retrieved June 11, 2024. https://www.esma.europa.eu/press-news/esma-news/esma-launches-third-consultation-under-mica
Ferreira, X., Venturyne, M., & Parkes, D.C. (2023). Credible decentralized exchange design via verifiable sequencing rules. Proceedings of the 55th annual acm symposium on theory of computing 723–736. https://doi.org/10.1145/3564246.3585233
Flashbots. (2024). Flashbots transparency dashboard. Retrieved June 10, 2024, from https://explore.flashbots.net/
Galal, H.S., & Youssef, A.M. (2021). Publicly verifiable and secrecy preserving periodic auctions. Financial cryptography and data security: International workshops 348–363. https://doi.org/10.1007/978-3-662-63958-0_29
Garousi, V., Felderer, M., & Mäntylä, M.V. (2019). Guidelines for including grey literature and conducting multivocal literature reviews in software engineering. Information and Software Technology, 106 101–121. https://doi.org/10.1016/j.infsof.2018.09.006
Gogol, K., Messias, J., Miori, D., Tessone, C., Livshits, B. (2024). Layer-2 arbitrage: An empirical analysis of swap dynamics and price disparities on rollups. https://arxiv.org/abs/2406.02172
Govindarajan, K., Vinayagamurthy, D., Jayachandran, P., & Rebeiro, C. (2022). Privacy-preserving decentralized exchange marketplaces. Proceedings of the 4th international conference on blockchain and cryptocurrency. https://doi.org/10.1109/ICBC54727.2022.9805505
Gramlich, V., Guggenberger, T., Principato, M., Schellinger, B., Duda, S., & Stoetzer, J. (2024). In decentralized finance nobody knows you are a dog. Proceedings of the 57th hawaii international conference on system sciences. https://scholarspace.manoa.hawaii.edu/items/82c23b77-3cd7-43a6-abc4-836628706d13
Gramlich, V., Guggenberger, T., Principato, M., Schellinger, B., & Urbach, N. (2023). A multivocal literature review of decentralized finance: Current knowledge and future research avenues. Electronic Markets,33, 11. https://doi.org/10.1007/s12525-023-00637-4
Guggenberger, T., Sedlmeir, J., Fridgen, G., & Luckow, A. (2022). An in-depth investigation of the performance characteristics of Hyperledger Fabric. Computers and Industrial Engineering,173. https://doi.org/10.1016/j.cie.2022.108716
G. Gürkaynak I. Yılmaz B. Yeşilaltay B. Bengi Intellectual property law and practice in the blockchain realm Computer Law & Security Review 2018 34 4 847 862 10.1016/j.clsr.2018.05.027
Häfner, S., &; Stewart, A. (2021). Front-running, smart contracts, and candle auctions. https://doi.org/10.2139/ssrn.3846363
Hägele, S. (2024). Centralized exchanges vs. decentralized exchanges in cryptocurrency markets: A systematic literature review. Electronic Markets, 34, 33. https://doi.org/10.1007/s12525-024-00714-2.
E. Hartwich P. Ollig G. Fridgen A. Rieger Probably something: A multi-layer taxonomy of non-fungible tokens Internet Research 2022 10.1108/INTR-08-2022-0666
Hartwich, E., Rieger, A., Sedlmeir, J., Jurek, D., & Fridgen, G. (2023). Machine economies. Electronic Markets,33, 36. https://doi.org/10.1007/s12525-023-00649-0
Heimbach, L., & Wattenhofer, R. (2022). Eliminating sandwich attacks with the help of game theory. Proceedings of the Asia Conference on computer and communications security 153–167. https://doi.org/10.1145/3488932.3517390.
Heimbach, L., & Wattenhofer, R. (2023). SoK: Preventing transaction reordering manipulations in decentralized finance. Proceedings of the 4th ACM conference on advances in financial technologies. https://doi.org/10.1145/3558535.3559784
Helmy, B. (2021). Exploring blockchain-based decentralized exchanges. https://crypto.unibe.ch/archive/theses/2021.bsc.benjamin.helmy.pdf
Jensen, J.R., von Wachter, V., &; Ross, O. (2023). Multi-block MEV. https://doi.org/10.48550/arXiv.2303.04430
Jensen, T., Hedman, J., Henningsson, S. (2019). How TradeLens delivers business value with blockchain technology. MIS Quarterly Executive, 18, 221–243. https://doi.org/10.17705/2msqe.00018.
Judmayer, A., Stifter, N., Schindler, P., &; Weippl, E. (2021). Estimating (miner) extractable value is hard, let’s go shopping! https://eprint.iacr.org/2021/1231
Kamphuis, F., Magri, B., Lamberty, R., & Faust, S. (2023). Revisiting transaction ledger robustness in the miner extractable value era. Extend to: 21st international conference on applied cryptography and network security 675–698. https://link.springer.com/chapter/10.1007/978-3-031-33491-7_25
Kelkar, M., Deb, S., Long, S., Juels, A., & Kannan, S. (2023). Themis: Fast, strong order-fairness in Byzantine consensus. Proceedings of the 2023 acm sigsac conference on computer and communications security 475–489. https://doi.org/10.1145/3576915.3616658
Kitchenham, B.A., &; Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Keele University and Durham University Joint Report. https://www.elsevier.com/data/promis/misc/525444systematicreviewsguide.pdf
Kokoris-Kogias, E., Alp, E.C., Gasser, L., Jovanovic, P., Syta, E., & Ford, B. (2021). CALYPSO: Private data management for decentralized ledgers. Proceedings of the VLDB Endowment, 14 586–599. https://doi.org/10.14778/3436905.3436917
Kulkarni, K., Diamandis, T., & Chitra, T. (2023). Towards a theory of maximal extractable value I: Constant function market makers. https://arxiv.org/abs/2207.11835
Kursawe, K. (2020). Wendy, the good little fairness widget: Achieving order fairness for blockchains. Proceedings of the 2nd acm conference on advances in financial technologies 25–36. https://doi.org/10.1145/3419614.3423263.
Kursawe, K. (2021). Wendy grows up: More order fairness. Financial cryptography and data security: 25th international conference 191–196. https://doi.org/10.1007/978-3-662-63958-0_17.
Leland, H.E. (1992). Insider trading: Should it be prohibited? Journal of Political Economy, 100(4), 859–887. https://www.jstor.org/stable/2138691
Levens, T. E. (2015). Too fast, too frequent? High-frequency trading and securities class actions. The University of Chicago Law Review, 82 (3), 1511–1557. https://www.jstor.org/stable/43575203
Li, R., Xie, Y., Ning, Z., Zhang, C., & Wei, L. (2022). Privacy-preserving decentralized cryptocurrency exchange without price manipulation. IEEE/CIC International Conference on Communications in China 274–279. https://doi.org/10.1109/ICCC55456.2022.9880750
Lyu, X., Zhang, M., Zhang, X., Niu, J., Zhang, Y., & Lin, Z. (2022). An empirical study on Ethereum private transactions and the security implications. https://doi.org/10.48550/arXiv.2208.02858
MacKenzie, D. (2021). Trading at the speed of light: How ultrafast algorithms are transforming financial markets. Princeton University Press. https://doi.org/10.1515/9780691217796
Malkhi, D., &; Szalachowski, P. (2022). Maximal extractable value (MEV) protection on a DAG. https://doi.org/10.48550/arXiv.2208.00940
MAXQDA (2024). Retrieved May 29, 2024, https://www.maxqda.com/
Mazorra, B., & Penna, N.D. (2023). Towards optimal prior-free permissionless rebate mechanisms, with applications to automated market makers & combinatorial orderflow auctions. https://doi.org/10.48550/arXiv.2306.17024
Mazorra, B., Reynolds, M., & Daza, V. (2022). Price of MEV: Towards a game theoretical approach to MEV. Proceedings of the ACM ccs workshop on decentralized finance and security 15–22. https://doi.org/10.1145/3560832.3563433.
Meyer, E., Welpe, I.M., & Sandner, P.G. (2022). Decentralized finance - a systematic literature review and research directions. Proceedings of the 30th European Conference on information systems. https://aisel.aisnet.org/ecis2022/_rp/25/
Momeni, P., Gorbunov, S., & Zhang, B. (2023). FairBlock: Preventing blockchain front-running with minimal overheads. Security and privacy in communication networks 250–271. https://doi.org/10.1007/978-3-031-25538-0_14
Montiel, M. D., Guerraoui, R., & Roman, PL. (2022). A decentralized anonymous blockchain intercommunication system via zero knowledge proofs: SurferMonkey. https://doi.org/10.48550/arXiv.2210.13242
Nadahalli, T., Khabbazian, M., & Wattenhofer, R. (2021). Timelocked bribing. Financial cryptography and data security: 25th international conference 53–72. https://doi.org/10.1007/978-3-662-64322-8_3
Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
Noyes, C. (2021). MEV and me. Retrieved February 16, 2023 https://research.paradigm.xyz/MEV
Obadia, A., Salles, A., Sankar, L., Chitra, T., Chellani, V., & Daian, P. (2021). Unity is strength: A formalization of cross-domain maximal extractable value. https://arxiv.org/abs/2112.01472
Öz, B., Kraner, B., Vallarano, N., Kruger, B.S., Matthes, F., & Tessone, C.J. (2023). Time moves faster when there is nothing you anticipate: The role of time in MEV rewards. Proceedings of the workshop on decentralized finance and security. https://doi.org/10.1145/3605768.3623563
Park, S., Jeong, W., Lee, Y., Son, B., Jang, H., & Lee, J. (2023). Unraveling the MEV enigma: ABI-free detection model using graph neural networks. https://doi.org/10.48550/arXiv.2305.05952
Perez, D., Werner, S.M., Xu, J., & Livshits, B. (2021). Liquidations: DeFi on a knife-edge. Financial cryptography and data security: 25th international conference 457–476. https://doi.org/10.1007/978-3-662-64331-0_24
Piet, J., Fairoze, J., & Weaver, N. (2022). Extracting Godl [sic] from the salt mines: Ethereum miners extracting value. https://doi.org/10.48550/arXiv.2203.15930
Pillai, B. (2023). Blockchain MEV minimisation solution with price guarantee reward. https://doi.org/10.36227/techrxiv.21345306.v1.
pmcgoohan (2021). Exploring miner extractable value (MEV) with Pmcgoohan. Retrieved February 16, 2023, https://anchor.fm/chainlinkgod/episodes/Exploring-Miner-Extractable-Value-MEV-with-Pmcgoohan-e13ufaj
Poux, P., De Filippi, P., &; Deffains, B. (2022). Maximal extractable value and the blockchain commons. https://doi.org/10.2139/ssrn.4198139
Principato, M., Babel, M., Guggenberger, T., Kropp, J., & Mertel, S. (2023). Towards solving the blockchain trilemma: An exploration of zero-knowledge proofs. Proceedings of the 44th international conference on information systems. [SPACE] https://aisel.aisnet.org/icis2023/blockchain/blockchain/5/
Qin, K., Chaliasos, S., Zhou, L., Livshits, B., Song, D., & Gervais, A. (2023). The blockchain imitation game. Proceedings of the 32nd usenix conference on security symposium 3961–3978. https://dl.acm.org/doi/10.5555/3620237.3620459
Qin, K., Zhou, L., & Gervais, A. (2022). Quantifying blockchain extractable value: How dark is the forest? IEEE Symposium on Security and Privacy 198–214. https://doi.org/10.1109/SP46214.2022.9833734
Qin, K., Zhou, L., Livshits, B., & Gervais, A. (2021). Attacking the DeFi ecosystem with flash loans for fun and profit. International conference on financial cryptography and data security: 25th international conference 3–32. https://doi.org/10.1007/978-3-662-64322-8_1
Ramos, S., & Ellul, J. (2023). The MEV saga: Can regulation illuminate the dark forest? https://doi.org/10.48550/arXiv.2305.03718
Regner, F., Urbach, N., & Schweizer, A. (2019). NFTs in practice - non-fungible tokens as core component of a blockchain-based event ticketing application. Proceedings of the 39th international conference on information systems. [SPACE] https://aisel.aisnet.org/icis2019/blockchain_fintech/blockchain_fintech/1/
A. Rieger T. Roth J. Sedlmeir G. Fridgen We need a broader debate on the sustainability of blockchain Joule 2022 6 1137 1141 10.1016/j.joule.2022.04.013
A. Röell Dual-capacity trading and the quality of the market Journal of Financial Intermediation 1990 1 2 105 124 10.1016/1042-9573(90)90001-V
Sariboz, E., Panwar, G., Vishwanathan, R., Misra, S. (2022). FIRST: Frontrunning resilient smart contracts. https://10.48550/arXiv.2204.00955
Schwarz-Schilling, C., Saleh, F., Thiery, T., Pan, J., Shah, N Monnot, B. (2023). Time is money: Strategic timing games in proof-of-stake protocols. https://arXiv.org/abs/2305.09032
J. Schwiderowski A.B. Pedersen R. Beck Crypto tokens and token systems Information Systems Frontiers 2024 26 1 319 332 10.1007/s10796-023-10382-w
J. Sedlmeir J. Lautenschlager G. Fridgen N. Urbach The transparency challenge of blockchain in organizations Electronic Markets 2022 32 3 1779 1794 10.1007/s12525-022-00536-0
Seike, H., Aoki, Y., & Koshizuka, N. (2021). Blockchain-based scalable ubiquitous code allocation method resilient to congestion. Proceedings of the international conference on blockchain 272–279. https://doi.org/10.1109/Blockchain53845.2021.00044
Seike, H., Hamada, T., Sumitomo, T., & Koshizuka, N. (2018). Blockchain-based ubiquitous code ownership management system without hierarchical structure..structure. “2018 IEEE SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI” 271–276. https://doi.org/10.1109/SmartWorld.2018.00081
Sekar, V. (2022). Preventing front-running attacks using timelock encryption. https://vsekar.me/assets/diss.pdf
Song, CY., & Hong, S. (2019). One way to solve the problem of presales of Ethereum: How to use public key cryptography. International journal of advanced science and convergence 1 (2), 27–31. https://doi.org/10.22662/IJASC.2019.1.2.027
Spain, M., Foley, S., & Gramoli, V. (2020). The impact of Ethereum throughput and fees on transaction latency during ICOs. V. Danos, M. Herlihy, M. Potop-Butucaru, J. Prat, and S. Tucci-Piergiovanni (Eds.), International Conference on Blockchain Economics, Security and Protocols 71 (9), 1–15). https://doi.org/10.4230/OASIcs.Tokenomics.2019.9
Stathakopoulou, C., Rüsch, S., Brandenburger, M., & Vukolić, M. (2021). Adding fairness to order: Preventing front-running attacks in BFT protocols using TEEs. 40th international symposium on reliable distributed systems 34–45. https://doi.org/10.1109/SRDS53918.2021.00013
Stiglitz, J.E. (1983). Risk, incentives and insurance: The pure theory of moral hazard. The geneva papers on risk and insurance-issues and practice 8, 4–33. https://www.jstor.org/stable/41950058
Stiglitz, J.E. (2002). Information and the change in the paradigm in economics. American Economic Review, 92(3), 460–501. https://www.jstor.org/stable/3083351
Strehle, E., Ante, L. (2020). Exclusive mining of blockchain transactions. https://doi.org/10.2139/ssrn.3686529
Struchkov, I., Lukashin, A., Kuznetsov, B., Mikhalev, I., & Mandrusova, Z. (2021). Agent-based modeling of blockchain decentralized financial protocols. 29th conference of open innovations association 337–343. https://doi.org/10.23919/FRUCT52173.2021.9435601
A. Sunyaev N. Kannengießer R. Beck H. Treiblmaier M. Lacity J. Kranz A. Luckow Token economy Business & Information Systems Engineering 2021 63 457 478 10.1007/s12599-021-00684-1
Tatabitovska, A., Ersoy, O.,; Erkin, Z. (2021). Mitigation of transaction manipulation attacks in UniSwap. https://repository.tudelft.nl/islandora/object/uuid:d4ad2e4e-1f42-41f4-8808-554f3ba7d1cf
Torres, C.F., Camino, R., & State, R. (2021). Frontrunner Jones and the raiders of the dark forest: An empirical study of frontrunning on the Ethereum blockchain. Proceedings of the 30th usenix security symposium 1343–1359. https://www.usenix.org/conference/usenixsecurity21/presentation/torres
Tsao, Y.-C., & Thanh, V- V. (2021). Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach. Renewable and Sustainable Energy Reviews,136. https://doi.org/10.1016/j.rser.2020.110452
Varun, M., Palanisamy, B., & Sural, S. (2022). Mitigating frontrunning attacks in Ethereum. Proceedings of the 4th international symposium on blockchain and secure critical infrastructure 115–124. https://doi.org/10.1145/3494106.3528682.
Vom Brocke, J., Simons, A., Riemer, K., Niehaves, B., Plattfaut, R., & Cleven, A. (2015). Standing on the shoulders of giants: Challenges and recommendations of literature search in information systems research. Communications of the association for information systems, 37 (1). https://doi.org/10.17705/1CAIS.03709.
Wahrstätter, A., Zhou, L., Qin, K., Svetinovic, D., & Gervais, A. (2023). Time to bribe: Measuring block construction market. https://arXiv.org/abs/2305.16468
Webster, J., & Watson, R.T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly, 26 (2), 13–23. http://www.jstor.org/stable/4132319
Weintraub, B., Torres, C.F., Nita-Rotaru, C., & State, R. (2022). A flash(bot) in the pan: measuring maximal extractable value in private pools. Proceedings of the 22nd acm internet measurement conference. [SPACE] https://doi.org/10.1145/3517745.3561448
Winseck, D. (2002). Illusions of perfect information and fantasies of control in the information society. Citizenship and Participation in the Information Age 33–55. https://doi.org/10.1177/14614440222226280
Xue, Y., Fu, J., Su, S., Bhuiyan, Z.A., Qiu, J., Lu, H., & Tian, Z. (2022). Preventing price manipulation attack by front-running. Advances in artificial intelligence and security 309–322. https://doi.org/10.1007/978-3-031-06764-8_25
Yang, S., Zhang, F., Huang, K., Chen, X., Yang, Y., & Zhu, F. (2023). SoK: MEV countermeasures: Theory and practice. arXiv:2212.05111
Ye, M., Yao, C., & Gai, J. (2013). The externalities of high frequency trading. https://doi.org/10.2139/ssrn.2066839
Zhang, H., Merino, L- H., Estrada-Galiñanes, V., & Ford, B. (2022). Flash freezing flash boys: Countering blockchain front-running. 42nd international conference on distributed computing systems workshops 90–95. https://doi.org/10.1109/ICDCSW56584.2022.00026
Zhang, W., Wei, C- P., Jiang, Q., Peng, C- H., & Zhao, J.L. (2021). Beyond the block: A novel blockchain-based technical model for long-term care insurance. Journal of Management Information Systems,38(2), 374–400. https://doi.org/10.1080/07421222.2021.1912926
Zhou, L., Qin, K., Cully, A., Livshits, B., & Gervais, A. (2021). On the just-in-time discovery of profit-generating transactions in DeFi protocols. IEEE Symposium on Security and Privacy 919–936. https://doi.org/10.1109/SP40001.2021.00113
Zhou, L., Qin, K., & Gervais, A. (2021). A2MM: Mitigating frontrunning, transaction reordering and consensus instability in decentralized exchanges. https://doi.org/10.48550/arXiv.2106.07371
Zhou, L., Qin, K., Torres, C.F., Le, D.V., & Gervais, A. (2021). High-frequency trading on decentralized on-chain exchanges. IEEE Symposium on Security and Privacy 428–445. https://doi.org/10.1109/SP40001.2021.00027
Züst, P. (2021). Analyzing and preventing sandwich attacks in Ethereum. Retrieved February 16,2024, https://www.smartcontractresearch.org/t/research-summary-analyzing-and-preventing-sandwich-attacks-in-ethereum/1033/1