No full text
Poster (Scientific congresses, symposiums and conference proceedings)
Robustness Analysis of AI Models in Critical Energy Systems
DOGOULIS, Panteleimon Tsampikos; JIMENEZ, Matthieu; GHAMIZI, Salah et al.
2024International Conference on Machine Learning
Peer reviewed
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Computer Science - Artificial Intelligence; cs.SY; eess.SY
Abstract :
[en] This paper analyzes the robustness of state-of-the-art AI-based models for power grid operations under the $N-1$ security criterion. While these models perform well in regular grid settings, our results highlight a significant loss in accuracy following the disconnection of a line.%under this security criterion. Using graph theory-based analysis, we demonstrate the impact of node connectivity on this loss. Our findings emphasize the need for practical scenario considerations in developing AI methodologies for critical infrastructure.
Disciplines :
Computer science
Author, co-author :
DOGOULIS, Panteleimon Tsampikos  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
JIMENEZ, Matthieu  ;  University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Computer Science > Team Yves LE TRAON
GHAMIZI, Salah
CORDY, Maxime  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
LE TRAON, Yves ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
External co-authors :
no
Language :
English
Title :
Robustness Analysis of AI Models in Critical Energy Systems
Publication date :
28 July 2024
Event name :
International Conference on Machine Learning
Event place :
Vienna, Austria
Event date :
28/07/2024
Audience :
International
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Available on ORBilu :
since 05 November 2024

Statistics


Number of views
151 (5 by Unilu)
Number of downloads
0 (0 by Unilu)

Bibliography


Similar publications



Contact ORBilu