[en] Isolating microorganisms from natural environments for cultivation under optimized laboratory settings has markedly improved our understanding of microbial ecology. Artificial growth conditions often diverge from those in natural ecosystems, forcing wild isolates into distinct selective pressures, resulting in diverse eco-physiological adaptations mediated by modification of key phenotypic traits. For motile microorganisms we still lack a biophysical understanding of the relevant traits emerging during domestication and their mechanistic interplay driving short-to-long-term microbial adaptation under laboratory conditions. Using microfluidics, atomic force microscopy, quantitative imaging, and mathematical modeling, we study phenotypic adaptation of Chromatium okenii, a motile phototrophic purple sulfur bacterium from meromictic Lake Cadagno, grown under laboratory conditions over multiple generations. Our results indicate that naturally planktonic C. okenii leverage shifts in cell-surface adhesive interactions, synergistically with changes in cell morphology, mass density, and distribution of intracellular sulfur globules, to suppress their swimming traits, ultimately switching to a sessile lifeform. A computational model of cell mechanics confirms the role of such phenotypic shifts in suppressing the planktonic lifeform. By investigating key phenotypic traits across different physiological stages of lab-grown C. okenii, we uncover a progressive loss of motility during the early stages of domestication, followed by concomitant deflagellation and enhanced surface attachment, ultimately driving the transition of motile sulfur bacteria to a sessile state. Our results establish a mechanistic link between suppression of motility and surface attachment via phenotypic changes, underscoring the emergence of adaptive fitness under laboratory conditions at the expense of traits tailored for natural environments.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Di Nezio, Francesco; Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland ; Microbiology Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
ONG, Irvine ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Anupam SENGUPTA
Riedel, René; Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
Goshal, Arkajyoti; Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
DHAR, Jayabrata ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Anupam SENGUPTA ; Department of Mechanical Engineering, National Institute of Technology, Durgapur, India
Roman, Samuele; Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland ; Alpine Biology Center Foundation, Bellinzona, Switzerland
Storelli, Nicola; Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland ; Microbiology Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
H2020 - 897629 - BIOMIMIC - BIOphysics of MIcrobe-Microplastic Interactions and Colonization
FnR Project :
FNR11572821 - Biophysics Of Microbial Adaptation To Fluctuations In The Environment, 2017 (15/05/2018-14/05/2023) - Anupam Sengupta FNR13719464 - Topological Fluid Mechanics: Decoding Emergent Dynamics In Anisotropic Fluids And Living Systems, 2019 (01/09/2020-31/08/2023) - Anupam Sengupta FNR13563560 - Microbial Signal Transduction Under Fluctuating Fields, 2019 (01/07/2019-30/06/2023) - Arkajyoti Ghoshal
Name of the research project :
R-AGR-3401 - A17/MS/11572821/MBRACE - part UL - SENGUPTA Anupam R-AGR-3692 - C19/MS/13719464/TOPOFLUME - SENGUPTA Anupam
Funders :
Fonds National de la Recherche Luxembourg Fonds National de la Recherche Luxembourg Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung H2020 Marie Skłodowska-Curie Actions Fonds National de la Recherche Luxembourg Institute of Microbiology SUPSI Union Européenne
Funding text :
This work was supported by the Swiss National Science Foundation (grant number 315230–179264) and by the Institute of Microbiology (IM) of the University of Applied Sciences and Arts of Southern Switzerland (SUPSI) through the financing from the Department of “Socialità e Sanità” (DSS) of the Canton Ticino. I.L.H.O. thanks the support from Marie Skłodowska-Curie Actions Individual Fellowship (BIOMIMIC grant agreement number 897629). Support of the Luxembourg National Research Fund’s AFR-Grant (Grant no. 13563560), the ATTRACT Investigator Grant, A17/MS/11572821/MBRACE (to A.S.), and the FNR-CORE Grant (No. C19/MS/13719464/TOPOFLUME/Sengupta) are gratefully acknowledged.
Palkova Z. Multicellular microorganisms: Laboratory versus nature. EMBO Rep 2004; 5:470–6. https://doi.org/10.1038/sj.embor.7400145 PMID: 15184977
Barreto HC, Cordeiro TN, Henriques AO, Gordo I. Rampant loss of social traits during domestication of a Bacillus subtilis natural isolate. Sci Rep 2020;10. https://doi.org/10.1038/S41598-020-76017-1.
Eydallin G, Ryall B, Maharjan R, Ferenci T. The nature of laboratory domestication changes in freshly isolated Escherichia coli strains. Environ Microbiol 2014; 16:813–28. https://doi.org/10.1111/14622920.12208 PMID: 23889812
Marks ME, Castro-Rojas CM, Teiling C, Du L, Kapatral V, Walunas TL, et al. The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol 2010; 192:3678–88. https://doi.org/10.1128/JB.00255-10.
Kuthan M, Devaux F, Janderová B, Slaninová I, Jacq C, Palková Z. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol 2003; 47:745–54. https://doi.org/10.1046/j.1365-2958.2003.03332.x PMID: 12535073
Adler J, Templeton B. The Effect of Environmental Conditions on the Motility of Escherichia coli. The Journal of General Microbiology 1967; 46:175–84. https://doi.org/10.1099/00221287-46-2-175 PMID: 4961758
Rendueles O, Velicer GJ. Evolution by flight and fight: diverse mechanisms of adaptation by actively motile microbes. ISME J 2017; 11:555–68. https://doi.org/10.1038/ismej.2016.115 PMID: 27662568
Pascoe B, Williams LK, Calland JK, Meric G, Hitchings MD, Dyer M, et al. Domestication of Campylobacter jejuni NCTC 11168. Microb Genom 2019;5. https://doi.org/10.1099/mgen.0.000279 PMID: 31310201
Luedin SM, Liechti N, Cox RP, Danza F, Frigaard NU, Posth NR, et al. Draft Genome Sequence of Chromatium okenii Isolated from the Stratified Alpine Lake Cadagno. Sci Rep 2019; 9:1–14. https://doi.org/10.1038/s41598-018-38202-1.
Sommer T, Danza F, Berg J, Sengupta A, Constantinescu G, Tokyay T, et al. Bacteria-induced mixing in natural waters. Geophys Res Lett 2017; 44:9424–32. https://doi.org/10.1002/2017GL074868.
Imhoff JF. The Chromatiaceae. The Prokaryotes 2006:846–73. https://doi.org/10.1007/0-387-30746-x_31.
Frigaard NU, Dahl C. Sulfur Metabolism in Phototrophic Sulfur Bacteria. Adv Microb Physiol 2008; 54:103–200. https://doi.org/10.1016/S0065-2911(08)00002-7.
Danza F, Ravasi D, Storelli N, Roman S, Lüdin S, Bueche M, et al. Bacterial diversity in the water column of meromictic Lake Cadagno and evidence for seasonal dynamics. PLoS One 2018; 13:1–17. https://doi.org/10.1371/journal.pone.0209743 PMID: 30586464
Storelli N, Peduzzi S, Saad MM, Frigaard NU, Perret X, Tonolla M. CO2 assimilation in the chemocline of Lake Cadagno is dominated by a few types of phototrophic purple sulfur bacteria. FEMS Microbiol Ecol 2013; 84:421–32. https://doi.org/10.1111/1574-6941.12074 PMID: 23330958
Di Nezio F, Beney C, Roman S, Danza F, Buetti-Dinh A, Tonolla M, et al. Anoxygenic photo-and chemo-synthesis of phototrophic sulfur bacteria from an alpine meromictic lake. FEMS Microbiol Ecol 2021;97. https://doi.org/10.1093/femsec/fiab010 PMID: 33512460
Philippi M, Kitzinger K, Berg JS, Tschitschko B, Kidane AT, Littmann S, et al. Purple sulfur bacteria fix N2 via molybdenumnitrogenase in a low molybdenum Proterozoic ocean analogue. Nat Commun 2021; 12:1–12. https://doi.org/10.1038/s41467-021-25000-z.
Pfennig N, Höflin K-H, Kusmierz H. Chromatium okenii (Thiorhodaceae) Biokonvektion, aero- und phototaktisches Verhalten. Encyclopedia Cinematographica 1968.
Di Nezio F, Roman S, Buetti-Dinh A, Sepúlveda Steiner O, Bouffard D, Sengupta A, et al. Motile bacteria leverage bioconvection for eco-physiological benefits in a natural aquatic environment. Front Microbiol 2023; 14:1253009. https://doi.org/10.3389/fmicb.2023.1253009 PMID: 38163082
Moens S, Vanderleyden J. Functions of Bacterial Flagella. Crit Rev Microbiol 1996; 22:67–100. https://doi.org/10.3109/10408419609106456 PMID: 8817078
Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol 2010; 8:634–44. https://doi.org/10.1038/nrmicro2405 PMID: 20694026
Bernhardt JRO’Connor MI, Sunday JM, Gonzalez A. Life in fluctuating environments: Adaptation to changing environments. Philosophical Transactions of the Royal Society B: Biological Sciences 2020;375. https://doi.org/10.1098/RSTB.2019.0454.
Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 2013; 37:849. https://doi.org/10.1111/1574-6976.12018 PMID: 23480406
Eichler B, Pfennig N. A new purple sulfur bacterium from stratified freshwater lakes, Amoebobacter purpureus sp. nov. Arch Microbiol 1988; 149:395–400. https://doi.org/10.1007/BF00425577.
Widdel F, Bak F. Gram-Negative Mesophilic Sulfate-Reducing Bacteria. The Prokaryotes, Springer New York; 1992, p. 3352–78. https://doi.org/10.1007/978-1-4757-2191-1_21.
Danza F, Storelli N, Roman S, Lüdin S, Tonolla M. Dynamic cellular complexity of anoxygenic phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno. PLoS One 2017; 12:1–17. https://doi.org/10.1371/journal.pone.0189510 PMID: 29245157
Sengupta A, Dhar J, Danza F, Ghoshal A, Müller S, Kakavand N. Active reconfiguration of cytoplasmic lipid droplets governs migration of nutrient-limited phytoplankton. Sci Adv 2022; 8:6005. https://doi.org/10.1126/sciadv.abn6005 PMID: 36332020
Sengupta A, Carrara F, Stocker R. Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 2017 543:7646 2017; 543:555–8. https://doi.org/10.1038/ nature21415 PMID: 28297706
Relucenti M, Familiari G, Donfrancesco O, Taurino M, Li X, Chen R, et al. Microscopy methods for biofilm imaging: Focus on sem and VP-SEM pros and cons. Biology (Basel) 2021; 10:1–17. https://doi.org/10.3390/biology10010051 PMID: 33445707
Elgeti J, Winkler RG, Gompper G. Physics of microswimmers—single particle motion and collective behavior: a review. Reports on Progress in Physics 2015; 78:056601. https://doi.org/10.1088/00344885/78/5/056601 PMID: 25919479
Fischer C, Wiggli M, Schanz F, Hanselmann KW, Bachofen R. Light environment and synthesis of bacteriochlorophyll by populations of Chromatium okenii under natural environmental conditions. FEMS Microbiol Ecol 1996; 21:1–9. https://doi.org/10.1016/0168-6496(96)00037-2.
Maier RM, Pepper IL. Bacterial Growth. In: Pepper IL, Gerba CP, Gentry TJ, editors. Environ Microbiol. 3rd ed., Elsevier Inc.; 2015, p. 37–56. https://doi.org/10.1016/B978-0-12-394626-3.00003-X.
Happel J, Brenner H. Low Reynolds number hydrodynamics. vol. 1. Dordrecht: Springer Netherlands; 1981. https://doi.org/10.1007/978-94-009-8352-6.
Koenig SH. Brownian motion of an ellipsoid. A correction to Perrin’s results. Biopolymers 1975; 14:2421–3. https://doi.org/10.1002/bip.1975.360141115.
Bakken LR, Olsen RA. Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass. Appl Environ Microbiol 1983; 45:1188–95. https://doi.org/10.1128/aem.45.4.1188-1195.1983 PMID: 16346263
Pickering IJ, George GN, Yu EY, Brune DC, Tuschak C, Overmann J, et al. Analysis of sulfur biochemistry of sulfur bacteria using X-ray absorption spectroscopy. Biochemistry 2001; 40:8138–45. https://doi.org/10.1021/bi0105532 PMID: 11434783
Moran U, Phillips R, Milo R. SnapShot: Key Numbers in Biology. Cell 2010; 141:1262–1262.e1. https://doi.org/10.1016/j.cell.2010.06.019 PMID: 20603006
Young KD. Bacterial morphology: why have different shapes? Curr Opin Microbiol 2007; 10:596–600. https://doi.org/10.1016/j.mib.2007.09.009 PMID: 17981076
Young KD. The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews 2006; 70:660–703. https://doi.org/10.1128/MMBR.00001-06/ASSET/245868D2-F676-4C3C-845F-4472A25CEA3A/ASSETS/GRAPHIC/ZMR0030621330009.JPEG. PMID: 16959965
Yang DC, Blair KM, Salama NR. Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments. Microbiology and Molecular Biology Reviews 2016; 80:187–203. https://doi.org/10.1128/MMBR.00031-15/ASSET/B7D46FCF-C630-447C-818E-2022CC3E5AAE/ASSETS/ GRAPHIC/ZMR0011624110005.JPEG.
van Teeseling MCF, de Pedro MA, Cava F. Determinants of Bacterial Morphology: From Fundamentals to Possibilities for Antimicrobial Targeting. Front Microbiol 2017;8.
Mitchell JG. The energetics and scaling of search strategies in bacteria. Am Nat 2002; 160:727–40. https://doi.org/10.1086/343874 PMID: 18707461
Bera P, Wasim A, Mondal J, Ghosh P. Mechanistic underpinning of cell aspect ratio-dependent emergent collective motions in swarming bacteria. Soft Matter 2021; 17:7322–31. https://doi.org/10.1039/d1sm00311a PMID: 34286783
Dusenbery DB. Fitness Landscapes for Effects of Shape on Chemotaxis and Other Behaviors of Bacteria. J Bacteriol 1998; 180:5978. https://doi.org/10.1128/JB.180.22.5978-5983.1998 PMID: 9811657
Wiklund K, Zhang H, Stangner T, Singh B, Bullitt E, Andersson M. A drag force interpolation model for capsule-shaped cells in fluid flows near a surface. Microbiology (N Y) 2018; 164:483–94. https://doi.org/10.1099/mic.0.000624 PMID: 29509130
Park S, Joo YK, Chen Y. Dynamic adhesion characterization of cancer cells under blood flow-mimetic conditions: effects of cell shape and orientation on drag force. Microfluid Nanofluidics 2018; 22:1–9. https://doi.org/10.1007/S10404-018-2132-7/FIGURES/7.
Marshall IPG, Blainey PC, Spormann AM, Quake SR. A single-cell genome for Thiovulum sp. Appl Environ Microbiol 2012; 78:8555–63. https://doi.org/10.1128/AEM.02314-12 PMID: 23023751
La Riviere J, Schmidt K. Morphologically conspicuous sulfur-oxidizing eubacteria. In: Dworkin M, editor. The prokaryotes: an evolving electronic resource for the microbiological community, Springer New York; 1999.
Parkin TB, Brock TD. The role of phototrophic bacteria in the sulfur cycle of a meromictic lake. Limnol Oceanogr 1981; 26:880–90. https://doi.org/10.4319/LO.1981.26.5.0880.
Guerrero R, Pedrós-Alió C, Schmidt TM, Mas J. A survey of buoyant density of microorganisms in pure cultures and natural samples. Microbiologia 1985; 1:53–65. PMID: 3917196
Mas J, van Gemerden H. Influence of sulfur accumulation and composition of sulfur globule on cell volume and buoyant density of Chromatium vinosum. Arch Microbiol 1987; 146:362–9. https://doi.org/10.1007/BF00410937/METRICS.
Martinez-Salas E, Martin JA, Vicente M. Relationship of Escherichia coli density to growth rate and cell age. J Bacteriol 1981; 147:97–100. https://doi.org/10.1128/jb.147.1.97-100.1981 PMID: 7016845
Woldringh CL, Binnerts JS, Mans A. Variation in Escherichia coli buoyant density measured in Percoll gradients. J Bacteriol 1981; 148:58–63. https://doi.org/10.1128/jb.148.1.58-63.1981 PMID: 6270065
Velicer GJ, Kroos L, Lenski RE. Loss of social behaviors by myxococcus xanthus during evolution in an unstructured habitat. Proc Natl Acad Sci U S A 1998; 95:12376–80. https://doi.org/10.1073/pnas.95.21. 12376 PMID: 9770494
Hillesland KL, Velicer GJ. Resource level affects relative performance of the two motility systems of Myxococcus xanthus. Microb Ecol 2005; 49:558–66. https://doi.org/10.1007/s00248-004-0069-8 PMID: 16052373
Overmann J. Ecology of Phototrophic Sulfur Bacteria. In: Hell R, Dahl C, Knaff DB, Leustek T, editors. Sulfur Metabolism in Phototrophic Organisms, vol. 49, Springer, Dordrecht; 2008, p. 375–96. https://doi.org/10.1007/978-1-4020-6863-8_19.
Jin D, Kotar J, Silvester E, Leptos KC, Croze OA. Diurnal Variations in the Motility of Populations of Biflagellate Microalgae. Biophys J 2020; 119:2055–62. https://doi.org/10.1016/J.BPJ.2020.10.006.
Gunawan TJ, Ikhwan Y, Restuhadi F, Pato U. Effect of light Intensity and photoperiod on growth of Chlorella pyrenoidosa and CO2 Biofixation. E3S Web of Conferences 2018; 31:03003. https://doi.org/10.1051/E3SCONF/20183103003.
Richter PR, Strauch SM, Ntefidou M, Schuster M, Daiker V, Nasir A, et al. Influence of Different Light-Dark Cycles on Motility and Photosynthesis of Euglena gracilis in Closed Bioreactors. Astrobiology 2014; 14:848. https://doi.org/10.1089/ast.2014.1176 PMID: 25279932
Sengupta A. Planktonic Active Matter 2023. https://doi.org/10.48550/arXiv.2301.09550.
Zhou Q, Zhang P, Zhang G, Peng M. Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod. Bioresour Technol 2015; 190:196–200. https://doi.org/10.1016/J.BIORTECH.2015.04.092.
Muzziotti D, Adessi A, Faraloni C, Torzillo G, De Philippis R. Acclimation strategy of Rhodopseudomonas palustris to high light irradiance. Microbiol Res 2017; 197:49–55. https://doi.org/10.1016/j.micres.2017.01.007 PMID: 28219525
Bayon-Vicente G, Wattiez R, Leroy B. Global Proteomic Analysis Reveals High Light Intensity Adaptation Strategies and Polyhydroxyalkanoate Production in Rhodospirillum rubrum Cultivated With Acetate as Carbon Source. Front Microbiol 2020;11. https://doi.org/10.3389/fmicb.2020.00464 PMID: 32269553
Pfennig N. Beobachtungen über das Schwärmen von Chromatium okenii. Arch Mikrobiol 1962; 42:90–5. https://doi.org/10.1007/BF00425194.
Pfennig N. Photosynthetic bacteria. Annu Rev Microbiol 1967; 21:285–324. https://doi.org/10.1146/annurev.mi.21.100167.001441 PMID: 4860261
Schrammek J. Untersuchungen über die Phototaxis der Purpurbakterien. Beiträge Zur Biologie Der Pflanzen 1934; 22:315–80.
El Othmany R, Zahir H, Ellouali M, Latrache H. Current understanding on adhesion and biofilm development in actinobacteria. Int J Microbiol 2021; 2021:e6637438. https://doi.org/10.1155/2021/6637438 PMID: 34122552
Valentini M, Filloux A. Biofilms and Cyclic di-GMP (c-di-GMP) signaling: Lessons from Pseudomonas aeruginosa and other bacteria. Journal of Biological Chemistry 2016; 291:12547–55. https://doi.org/10.1074/jbc.R115.711507 PMID: 27129226
Wu DC, Zamorano-Sánchez D, Pagliai FA, Park JH, Floyd KA, Lee CK, et al. Reciprocal c-di-GMP signaling: Incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation. PLoS Genet 2020; 16:1–31. https://doi.org/10.1371/journal.pgen.1008703 PMID: 32176702
Park S, Sauer K. Controlling biofilm development through cyclic di-GMP signaling. Adv Exp Med Biol 2022; 1386:69. https://doi.org/10.1007/978-3-031-08491-1_3 PMID: 36258069
Fernandez NL, Hsueh BY, Nhu NTQ, Franklin JL, Dufour YS, Waters CM. Vibrio cholerae adapts to sessile and motile lifestyles by cyclic di-GMP regulation of cell shape. Proc Natl Acad Sci U S A 2020; 117:29046–54. https://doi.org/10.1073/PNAS.2010199117/SUPPL_FILE/PNAS.2010199117.SD19. PDF. PMID: 33139575
Tan YS, Zhang RK, Liu ZH, Li BZ, Yuan YJ. Microbial Adaptation to Enhance Stress Tolerance. Front Microbiol 2022; 13:888746. https://doi.org/10.3389/fmicb.2022.888746 PMID: 35572687
Baquero F. Environmental stress and evolvability in microbial systems. Clinical Microbiology and Infection 2009; 15:5–10. https://doi.org/10.1111/j.1469-0691.2008.02677.x PMID: 19220344
Carrara F, Sengupta A, Behrendt L, Vardi A, Stocker R. Bistability in oxidative stress response determines the migration behavior of phytoplankton in turbulence. Proc Natl Acad Sci U S A 2021;118. https://doi.org/10.1073/pnas.2005944118 PMID: 33495340
Sengupta A. Microbial Active Matter: A Topological Framework. Front Phys 2020; 8:517227. https://doi.org/10.3389/FPHY.2020.00184/BIBTEX.
Zhu S, Gao B. Bacterial Flagella Loss under Starvation. Trends Microbiol 2020; 28:785–8. https://doi.org/10.1016/j.tim.2020.05.002 PMID: 32456977
Ferreira JL, Gao FZ, Rossmann FM, Nans A, Brenzinger S, Hosseini R, et al. γ-proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures. PLoS Biol 2019; 17: e3000165. https://doi.org/10.1371/journal.pbio.3000165 PMID: 30889173
Dubay MM, Johnston N, Wronkiewicz M, Lee J, Lindensmith CA, Nadeau JL. Quantification of Motility in Bacillus subtilis at Temperatures Up to 84◦C Using a Submersible Volumetric Microscope and Automated Tracking. Front Microbiol 2022; 13:836808. https://doi.org/10.3389/FMICB.2022.836808/ BIBTEX.
Mullane KK, Nishiyama M, Kurihara T, Bartlett DH. Low Temperature and High Hydrostatic Pressure Have Compounding Negative Effects on Marine Microbial Motility 2022. https://doi.org/10.1101/2022.10.26.513967.
Patrick JE, Kearns DB. Laboratory strains of Bacillus subtilis do not exhibit swarming motility. J Bacteriol 2009; 191:7129–33. https://doi.org/10.1128/JB.00905-09 PMID: 19749039
Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, et al. Biofilm Formation As a Response to Ecological Competition. PLoS Biol 2015; 13:e1002191. https://doi.org/10.1371/journal.pbio.1002191 PMID: 26158271
Rode DKH, Singh PK, Drescher K. Multicellular and unicellular responses of microbial biofilms to stress. Biol Chem 2020; 401:1365–74. https://doi.org/10.1515/HSZ-2020-0213/ASSET/GRAPHIC/J_HSZ2020-0213_FIG_002.JPG. PMID: 32990640
Casadesús J, Low DA. Programmed Heterogeneity: Epigenetic Mechanisms in Bacteria. Journal of Biological Chemistry 2013; 288:13929–35. https://doi.org/10.1074/jbc.R113.472274 PMID: 23592777
Wang MX, Church GM. A whole genome approach to in vivo DNA-protein interactions in E. coli. Nature 1992 360:6404 1992; 360:606–10. https://doi.org/10.1038/360606a0.
Blyn LB, Braaten BA, Low DA. Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. EMBO J 1990; 9:4045–54. https://doi.org/10.1002/j.1460-2075.1990.tb07626.x PMID: 2147413