Article (Périodiques scientifiques)
Multi-relational graph contrastive learning with learnable graph augmentation.
Mo, Xian; PANG, Jun; Wan, Binyuan et al.
2024In Neural Networks, 181, p. 106757
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
NN25.pdf
Postprint Éditeur (1.43 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Contrastive learning; Graph augmentation; Knowledge graphs
Résumé :
[en] Multi-relational graph learning aims to embed entities and relations in knowledge graphs into low-dimensional representations, which has been successfully applied to various multi-relationship prediction tasks, such as information retrieval, question answering, and etc. Recently, contrastive learning has shown remarkable performance in multi-relational graph learning by data augmentation mechanisms to deal with highly sparse data. In this paper, we present a Multi-Relational Graph Contrastive Learning architecture (MRGCL) for multi-relational graph learning. More specifically, our MRGCL first proposes a Multi-relational Graph Hierarchical Attention Networks (MGHAN) to identify the importance between entities, which can learn the importance at different levels between entities for extracting the local graph dependency. Then, two graph augmented views with adaptive topology are automatically learned by the variant MGHAN, which can automatically adapt for different multi-relational graph datasets from diverse domains. Moreover, a subgraph contrastive loss is designed, which generates positives per anchor by calculating strongly connected subgraph embeddings of the anchor as the supervised signals. Comprehensive experiments on multi-relational datasets from three application domains indicate the superiority of our MRGCL over various state-of-the-art methods. Our datasets and source code are published at https://github.com/Legendary-L/MRGCL.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Mo, Xian ;  School of Information Engineering, Ningxia University, Yinchuan 750021, China, Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West, Ningxia University, Yinchuan 750021, China. Electronic address: mxian168@nxu.edu.cn
PANG, Jun  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Wan, Binyuan;  School of Information Engineering, Ningxia University, Yinchuan 750021, China. Electronic address: binyuanw@outlook.com
Tang, Rui ;  School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China. Electronic address: tangrscu@scu.edu.cn
Liu, Hao;  School of Information Engineering, Ningxia University, Yinchuan 750021, China, Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West, Ningxia University, Yinchuan 750021, China. Electronic address: liuhao@nxu.edu.cn
Jiang, Shuyu ;  School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China. Electronic address: jiang.shuyu07@gmail.com
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Multi-relational graph contrastive learning with learnable graph augmentation.
Date de publication/diffusion :
26 septembre 2024
Titre du périodique :
Neural Networks
ISSN :
0893-6080
eISSN :
1879-2782
Maison d'édition :
Elsevier Ltd, Etats-Unis
Volume/Tome :
181
Pagination :
106757
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
National Natural Science Foundation of China
Disponible sur ORBilu :
depuis le 10 octobre 2024

Statistiques


Nombre de vues
77 (dont 3 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
3
OpenCitations
 
0
citations OpenAlex
 
6

Bibliographie


Publications similaires



Contacter ORBilu