beamforming; caching; deep learning; handover; LEO satellite; multicasting; optimization; precoding; regenerative payload; Caching; Deep learning; Hand over; Low earth orbit satellites; Optimisations; Payload; Phased-arrays; Precoding; Regenerative payloads; Satellite broadcasting; Computer Networks and Communications; Electrical and Electronic Engineering
Résumé :
[en] The regenerative capabilities of next-generation satellite systems offer a novel approach to design low earth orbit (LEO) satellite communication systems, enabling full flexibility in bandwidth and spot beam management, power control, and onboard data processing. These advancements allow the implementation of intelligent spatial multiplexing techniques, addressing the ever-increasing demand for future broadband data traffic. Existing satellite resource management solutions, however, do not fully exploit these capabilities. To address this issue, a novel framework called flexible resource management algorithm for LEO satellites (FLARE-LEO) is proposed to jointly design bandwidth, power, and spot beam coverage optimized for the geographic distribution of users. It incorporates multi-spot beam multicasting, spatial multiplexing, caching, and handover (HO). In particular, the spot beam coverage is optimized by using the unsupervised K-means algorithm applied to the realistic geographical user demands, followed by a proposed successive convex approximation (SCA)-based iterative algorithm for optimizing the radio resources. Furthermore, we propose two joint transmission architectures during the HO period, which jointly estimate the downlink channel state information (CSI) using deep learning and optimize the transmit power of the LEOs involved in the HO process to improve the overall system throughput. Simulations demonstrate superior performance in terms of delivery time reduction of the proposed algorithm over the existing solutions.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
BHANDARI, Sovit ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
VU, Thang Xuan ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
User-Centric Flexible Resource Management Framework for LEO Satellites With Fully Regenerative Payload
Date de publication/diffusion :
14 février 2024
Titre du périodique :
IEEE Journal on Selected Areas In Communications
ISSN :
0733-8716
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
Titre particulier du numéro :
Space Communications New Frontiers: From Near Earth to Deep Space
S. Bhandari, T. X. Vu, S. Chatzinotas, and B. Ottersten, "Efficient content caching for delivery time minimization in the LEO satellite networks, " in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Rome, Italy, May 2023, pp. 1246-1252.
I. Leyva-Mayorga et al., "LEO small-satellite constellations for 5G and beyond-5G communications, " IEEE Access, vol. 8, pp. 184955-184964, 2020.
S. Liu et al., "LEO satellite constellations for 5G and beyond: How will they reshape vertical domains?" IEEE Commun. Mag., vol. 59, no. 7, pp. 30-36, Jul. 2021.
O. Kodheli et al., "Satellite communications in the new space era: A survey and future challenges, " IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 70-109, 1st Quart., 2021.
T. X. Vu, N. Maturo, S. Chatzinotas, J. Grotz, T. Christophory, and B. Ottersten, "Dynamic bandwidth allocation and edge caching optimization for nonlinear content delivery through flexible multibeam satellites, " in Proc. IEEE Int. Conf. Commun. (ICC), May 2022, pp. 1143-1148.
G. Thomas, "Enabling technologies for flexible HTS payloads, " in Proc. 33rd AIAA Int. Commun. Satell. Syst. Conf. Exhib., Queeensland, QLD, Australia, Sep. 2015, Paper no. 2015-4348.
N. Mazzali, M. R. Bhavani Shankar, and B. Ottersten, "On-board signal predistortion for digital transparent satellites, " in Proc. IEEE 16th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Stockholm, Sweden, Jun. 2015, pp. 535-539.
G. Shacham, "On board processing payload, " in Proc. 24th KA Broadband Commun. Conf., Niagara Falls, ON, Canada, 2018, pp. 1-6.
T. M. Braun and W. R. Braun, "Processing payload and flexible payload, " in Satellite Communications Payload and System. Hoboken, NJ, USA: Wiley, 2021, pp. 270-296.
T. S. Abdu, S. Kisseleff, E. Lagunas, J. Grotz, S. Chatzinotas, and B. Ottersten, "Demand-aware onboard payload processor management for high throughput NGSO satellite systems, " IEEE Trans. Aerosp. Electron. Syst., pp. 1-18, Oct. 2023.
T. X. Vu, Y. Poirier, S. Chatzinotas, N. Maturo, J. Grotz, and F. Roelens, "Modeling and implementation of 5G edge caching over satellite, " Int. J. Satell. Commun. Netw., vol. 38, no. 5, pp. 395-406, Sep. 2020.
M. Luglio, S. P. Romano, C. Roseti, and F. Zampognaro, "Satellite multi-beam multicast support for an efficient community-based CDN, " Comput. Netw., vol. 217, Nov. 2022, Art. no. 109352.
P. J. Honnaiah, N. Maturo, S. Chatzinotas, S. Kisseleff, and J. Krause, "Demand-based adaptive multi-beam pattern and footprint planning for high throughput GEO satellite systems, " IEEE Open J. Commun. Soc., vol. 2, pp. 1526-1540, 2021.
Q. T. Ngo, K. T. Phan, W. Xiang, A. Mahmood, and J. Slay, "Two-tier cache-aided full-duplex hybrid satellite-terrestrial communication networks, " IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 3, pp. 1753-1765, Jun. 2022.
X. Zhu, C. Jiang, L. Kuang, and Z. Zhao, "Cooperative multilayer edge caching in integrated satellite-terrestrial networks, " IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 2924-2937, May 2022.
K. An, Y. Li, X. Yan, and T. Liang, "On the performance of cacheenabled hybrid satellite-terrestrial relay networks, " IEEE Wireless Commun. Lett., vol. 8, no. 5, pp. 1506-1509, Oct. 2019.
D. Han, W. Liao, H. Peng, H. Wu, W. Wu, and X. Shen, "Joint cache placement and cooperative multicast beamforming in integrated satellite-terrestrial networks, " IEEE Trans. Veh. Technol., vol. 71, no. 3, pp. 3131-3143, Mar. 2022.
P. K. Chowdhury, M. Atiquzzaman, and W. Ivancic, "Handover schemes in satellite networks: State-of-the-art and future research directions, " IEEE Commun. Surveys Tuts., vol. 8, no. 4, pp. 2-14, 4th Quart., 2006.
T. X. Vu, S. Chatzinotas, and B. Ottersten, "Dynamic bandwidth allocation and precoding design for highly-loaded multiuser MISO in beyond 5G networks, " IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1794-1805, Mar. 2022.
A. Guidotti and A. Vanelli-Coralli, "Clustering strategies for multicast precoding in multibeam satellite systems, " Int. J. Satell. Commun. Netw., vol. 38, no. 2, pp. 85-104, Mar. 2020.
A. Guidotti, A. Vanelli-Coralli, and C. Amatetti, "Federated cell-free MIMO in non-terrestrial networks: Architectures and performance, " 2023, arXiv:2302.00057.
Movielens 1M Dataset. Accessed: May 1, 2023. [Online]. Available: https://grouplens.org/datasets/movielens/1m/
Electronic Warfare and Radar Systems Engineering Handbook, 4th ed., Avionics Dept. NAWCWD, Nav. Air Warfare Center Weapons Div., St. Point Mugu Naws, CA, USA, 2013.
5G NR: Multiplexing and Channel Coding, document Tech. Spec. (TS) 138.211, Version 16.2.0, 3rd Gener. Partnership Project (3GPP), 2020.
T. X. Vu, S. Chatzinotas, and B. Ottersten, "Edge-caching wireless networks: Performance analysis and optimization, " IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2827-2839, Apr. 2018.
S. Bhandari, N. Ranjan, P. Khan, H. Kim, and Y. S. Hong, "Deep learning-based content caching in the fog access points, " Electronics, vol. 10, no. 4, p. 512, 2021.
K.-X. Li et al., "Downlink transmit design for massive MIMO LEO satellite communications, " IEEE Trans. Commun., vol. 70, no. 2, pp. 1014-1028, Feb. 2022.
D. Bharadia and S. Katti, "FastForward: Fast and constructive full duplex relays, " in Proc. ACM Conf. SIGCOMM, Chicago, IL, USA, Aug. 2014, pp. 199-210.
D. Arthur and S. Vassilvitskii, "K-means': The advantages of careful seeding, " in Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms, 2007, pp. 1027-1035.
R. Apu and M. Gavrilova, Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence, vol. 158. Berlin, Germany: Springer, 2009, pp. 109-129.
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
M. K. Pakhira, "A linear time-complexity k-means algorithm using cluster shifting, " in Proc. Int. Conf. Comput. Intell. Commun. Netw., Bhopal, India, Nov. 2014, pp. 1047-1051.
S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift, " in Proc. Int. Conf. Mach. Learn., Lille, France, 2015, pp. 448-456.
H. Wu and X. Gu, "Towards dropout training for convolutional neural networks, " Neural Netw., vol. 71, pp. 1-10, Nov. 2015.
S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, "Activation functions in deep learning: A comprehensive survey and benchmark, " Neurocomputing, vol. 503, pp. 92-108, Sep. 2022.
S. Ruder, "An overview of gradient descent optimization algorithms, " 2016, arXiv:1609.04747.
D. P. Kingma and J. L. Ba, "Adam: A method for stochastic optimization, " in Proc. 3rd Int. Conf. Learn. Represent., San Diego, CA, USA, 2015, pp. 1-15.
N. Ranjan, S. Bhandari, P. Khan, Y.-S. Hong, and H. Kim, "Largescale road network congestion pattern analysis and prediction using deep convolutional autoencoder, " Sustainability, vol. 13, no. 9, p. 5108, May 2021.
K. He and J. Sun, "Convolutional neural networks at constrained time cost, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA, Jun. 2015, pp. 5353-5360.
M. Y. Abdelsadek, G. K. Kurt, and H. Yanikomeroglu, "Distributed massive MIMO for LEO satellite networks, " IEEE Open J. Commun. Soc., vol. 3, pp. 2162-2177, 2022.
F. Riera-Palou, G. Femenias, M. Caus, M. Shaat, and A. I. Perez-Neira, "Scalable cell-free massive MIMO networks with LEO satellite support, " IEEE Access, vol. 10, pp. 37557-37571, 2022.
J. A. Nanzer, S. R. Mghabghab, S. M. Ellison, and A. Schlegel, "Distributed phased arrays: Challenges and recent advances, " IEEE Trans. Microw. Theory Techn., vol. 69, no. 11, pp. 4893-4907, Nov. 2021.
D. Tuzi, T. Delamotte, and A. Knopp, "Satellite swarm-based antenna arrays for 6G direct-to-cell connectivity, " IEEE Access, vol. 11, pp. 36907-36928, 2023.
S. Cakaj, "The parameters comparison of the 'starlink' LEO satellites constellation for different orbital shells, " Frontiers Commun. Netw., vol. 2, May 2021.
H. W. Lee, S. Shimizu, S. Yoshikawa, and K. Ho, "Satellite constellation pattern optimization for complex regional coverage, " J. Spacecraft Rockets, vol. 57, no. 6, pp. 1309-1327, Nov. 2020.
W. C. Jakes and D. C. Cox, Microwave Mobile Communications. Hoboken, NJ, USA: Wiley, 1994.
LTE in a Nutshell: The Physical Layer, Telesystem Innov., Northwood, OH, USA, 2010.
T. X. Vu et al., "Machine learning-enabled joint antenna selection and precoding design: From offline complexity to online performance, " IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3710-3722, Jun. 2021.