Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element
Mercadier, Darius; Nguyen, Viet Sang; Rivain, Matthieu et al.
2024In IACR Transactions on Cryptographic Hardware and Embedded Systems, 2024 (2), p. 588 - 629
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
TCHES2024_2_21.pdf
Postprint Éditeur (1.53 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Obfuscation; Secure Element; White-Box Cryptography; VBB Security
Résumé :
[en] Software obfuscation is a powerful tool to protect the intellectual property or secret keys inside programs. Strong software obfuscation is crucial in the context of untrusted execution environments (e.g., subject to malware infection) or to face potentially malicious users trying to reverse-engineer a sensitive program. Unfortunately, the state-of-the-art of pure software-based obfuscation (including white-box cryptography) is either insecure or infeasible in practice. This work introduces OBSCURE, a versatile framework for practical and cryptographically strong software obfuscation relying on a simple stateless secure element (to be embedded, for example, in a protected hardware chip or a token). Based on the foundational result by Goyal et al. from TCC 2010, our scheme enjoys provable security guarantees, and further focuses on practical aspects, such as efficient execution of the obfuscated programs, while maintaining simplicity of the secure element. In particular, we propose a new rectangular universalization technique, which is also of independent interest. We provide an implementation of OBSCURE taking as input a program source code written in a subset of the C programming language. This ensures usability and a broad range of applications of our framework. We benchmark the obfuscation on simple software programs as well as on cryptographic primitives, hence highlighting the possible use cases of the framework as an alternative to pure software-based white-box implementations.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Mercadier, Darius;  Google, Munich, Germany
Nguyen, Viet Sang;  Université Jean Monnet, Saint-Étienne, France
Rivain, Matthieu;  CryptoExperts, Paris, France
UDOVENKO, Aleksei  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Cryptolux
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element
Date de publication/diffusion :
12 mars 2024
Nom de la manifestation :
Conference on Cryptographic Hardware and Embedded Systems (CHES)
Organisateur de la manifestation :
International Association for Cryptologic Research (IACR)
Lieu de la manifestation :
Halifax, Canada
Date de la manifestation :
September 4-7, 2024
Manifestation à portée :
International
Titre du périodique :
IACR Transactions on Cryptographic Hardware and Embedded Systems
eISSN :
2569-2925
Maison d'édition :
Ruhr-University of Bochum
Volume/Tome :
2024
Fascicule/Saison :
2
Pagination :
588 - 629
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR13641232 - Analysis And Protection Of Lightweight Cryptographic Algorithms, 2019 (01/01/2021-31/12/2023) - Alex Biryukov
Intitulé du projet de recherche :
R-AGR-3748 - C19/IS/13641232/APLICA - BIRYUKOV Alexei
Organisme subsidiant :
ANR - Agence Nationale de la Recherche
FNR - Fonds National de la Recherche
DFG - Deutsche Forschungsgemeinschaft
Subventionnement (détails) :
This work was done while the authors were at CryptoExperts. This work was partially supported by the French ANR-AAPG2019 SWITECH project. The fourth author was partially supported by the Luxembourg National Research Fund’s (FNR) and the German Research Foundation’s (DFG) joint project APLICA (C19/IS/13641232). We are very grateful to Pascal Paillier for generating the discretized neural network used in our benchmark (as reported in Appendix C). We would also like to thank the anonymous reviewers of TCHES for their fruitful comments that helped us improve the paper.
Disponible sur ORBilu :
depuis le 09 octobre 2024

Statistiques


Nombre de vues
101 (dont 4 Unilu)
Nombre de téléchargements
34 (dont 0 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
OpenCitations
 
0
citations OpenAlex
 
1

Bibliographie


Publications similaires



Contacter ORBilu