Article (Périodiques scientifiques)
On the effectiveness of hybrid pooling in mixup-based graph learning for language processing
DONG, Zeming; HU, Qiang; Zhang, Zhenya et al.
2024In Journal of Systems and Software, 216, p. 112139
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
JSS__On_the_Effectiveness_of_Hybrid_Pooling_in_Mixup_Based_Graph_Learning_for_Language_Processing.pdf
Postprint Auteur (579.05 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Data augmentation; Manifold-mixup; Graph neural networks
Résumé :
[en] Graph neural network (GNN)-based graph learning has been popular in natural language and programming language processing, particularly in text and source code classification. Typically, GNNs are constructed by incorporating alternating layers which learn transformations of graph node features, along with graph pooling layers that use graph pooling operators (e.g., Max-pooling) to effectively reduce the number of nodes while preserving the semantic information of the graph. Recently, to enhance GNNs in graph learning tasks, Manifold-Mixup, a data augmentation technique that produces synthetic graph data by linearly mixing a pair of graph data and their labels, has been widely adopted. However, the performance of Manifold-Mixup can be highly affected by graph pooling operators, and there have not been many studies that are dedicated to uncovering such affection. To bridge this gap, we take an early step to explore how graph pooling operators affect the performance of Mixup-based graph learning. To that end, we conduct a comprehensive empirical study by applying Manifold-Mixup to a formal characterization of graph pooling based on 11 graph pooling operations (9 hybrid pooling operators, 2 non-hybrid pooling operators). The experimental results on both natural language datasets (Gossipcop, Politifact) and programming language datasets (JAVA250, Python800) demonstrate that hybrid pooling operators are more effective for Manifold-Mixup than the standard Max-pooling and the state-of-the-art graph multiset transformer (GMT) pooling, in terms of producing more accurate and robust GNN models. Editor's note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
DONG, Zeming  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal ; Kyushu University, Japan
HU, Qiang ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SerVal > Team Yves LE TRAON
Zhang, Zhenya ;  Kyushu University, Japan
GUO, Yuejun  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > SerVal > Team Yves LE TRAON ; Luxembourg Institute of Science and Technology, Luxembourg
CORDY, Maxime  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
PAPADAKIS, Mike ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Traon, Yves Le;  University of Luxembourg, Luxembourg
Zhao, Jianjun ;  Kyushu University, Japan
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
On the effectiveness of hybrid pooling in mixup-based graph learning for language processing
Date de publication/diffusion :
octobre 2024
Titre du périodique :
Journal of Systems and Software
ISSN :
0164-1212
eISSN :
1873-1228
Maison d'édition :
Elsevier Inc.
Volume/Tome :
216
Pagination :
112139
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
JST-Mirai Program
Japan Society for the Promotion of Science
Subventionnement (détails) :
This research is supported in part by JSPS KAKENHI Grant No. JP23H03372 , Japan.This research is supported in part by JSPS KAKENHI Grant No. JP23H03372 and No. JP24K02920, Japan. The research is also supported in part by JST-Mirai Program Grant No. JPMJMI20B8.
Disponible sur ORBilu :
depuis le 03 octobre 2024

Statistiques


Nombre de vues
191 (dont 36 Unilu)
Nombre de téléchargements
53 (dont 1 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
4
OpenCitations
 
0
citations OpenAlex
 
5
citations WoS
 
3

Bibliographie


Publications similaires



Contacter ORBilu