Aggarwal A, Lohia P, Nagar S, Dey K, Saha D (2019) Black box fairness testing of machine learning models. In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, pp 625–635
Agrawal AK, Agarwal K, Choudhary J, Bhattacharya A, Tangudu S, Makhija N, Rajitha B (2020) Automatic traffic accident detection system using resnet and svm. In: 2020 Fifth International conference on research in computational intelligence and communication networks (ICRCICN), IEEE, pp 71–76
S. Ahmed I.E. Nielsen A. Tripathi S. Siddiqui R.P. Ramachandran G. Rasool Transformers in time-series analysis: a tutorial Circuits, Syst, Signal Process 2023 42 12 7433 7466 10.1007/s00034-023-02454-8
Bouhsissin S, Sael N, Benabbou F (2021) Enhanced vgg19 model for accident detection and classification from video. In: 2021 International conference on digital age & technological advances for sustainable development (ICDATA), IEEE, pp 39–46
L. Breiman Random forests. Machine Learn 2001 45 1 5 32 10.1023/A:1010933404324
Byun T, Sharma V, Vijayakumar A, Rayadurgam S, Cofer D (2019) Input prioritization for testing neural networks. In: 2019 IEEE International conference on artificial intelligence testing (AITest), IEEE, pp 63–70
J. Chen Z. Wu Z. Wang H. You L. Zhang M. Yan Practical accuracy estimation for efficient deep neural network testing ACM Trans Softw Eng Methodol (TOSEM) 2020 29 4 1 35 10.1145/3394112
Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp 785–794
Cheng D, Cao C, Xu C, Ma X (2018) Manifesting bugs in machine learning code: an explorative study with mutation testing. In: 2018 IEEE International conference on software quality, reliability and security (QRS), IEEE, pp 313–324
Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. Noise Reduction Speech Process pp 1–4
Covington P, Adams J, Sargin E (2016) Deep neural networks for youtube recommendations. In: Proceedings of the 10th ACM conference on recommender systems, pp 191–198
X. Dang Y. Li M. Papadakis J. Klein T.F. Bissyandé Y. Le Traon Graphprior: mutation-based test input prioritization for graph neural networks ACM Trans Softw Eng Methodol 2023 33 1 1 40 10.1145/3607191
Dang X, Li Y, Papadakis M, Klein J, Bissyandé TF, Le Traon Y (2024) Test input prioritization for machine learning classifiers. IEEE Trans Softw Eng
de S Campos Junior H, Araújo MAP, David JMN, Braga R, Campos F, Ströele V (2017) Test case prioritization: a systematic review and mapping of the literature. In: Proceedings of the XXXI Brazilian symposium on software engineering, pp 34–43
Di Nardo D, Alshahwan N, Briand L, Labiche Y (2013) Coverage-based test case prioritisation: an industrial case study. In: 2013 IEEE Sixth international conference on software testing, verification and validation, IEEE, pp 302–311
H. Do G. Rothermel On the use of mutation faults in empirical assessments of test case prioritization techniques IEEE Trans Softw Eng 2006 32 9 733 752 10.1109/TSE.2006.92
Du L (2020) How much deep learning does neural style transfer really need? an ablation study. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 3150–3159
Du X, Xie X, Li Y, Ma L, Liu Y, Zhao J (2019) Deepstellar: model-based quantitative analysis of stateful deep learning systems. In: Proceedings of the 2019 27th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pp 477–487
S. Elbaum A.G. Malishevsky G. Rothermel Test case prioritization: a family of empirical studies IEEE Trans Softw Eng 2002 28 2 159 182 10.1109/32.988497
C. Fang Z. Chen K. Wu Z. Zhao Similarity-based test case prioritization using ordered sequences of program entities Softw Quality J 2014 22 335 361 10.1007/s11219-013-9224-0
Feichtenhofer C, Fan H, Malik J, He K (2019) Slowfast networks for video recognition. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 6202–6211
Feng Y, Shi Q, Gao X, Wan J, Fang C, Chen Z (2020) Deepgini: prioritizing massive tests to enhance the robustness of deep neural networks. In: Proceedings of the 29th ACM SIGSOFT international symposium on software testing and analysis, pp 177–188
Ghosh S, Sunny SJ, Roney R (2019) Accident detection using convolutional neural networks. In: 2019 International conference on data science and communication (IconDSC), IEEE, pp 1–6
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
Henard C, Papadakis M, Harman M, Jia Y, Le Traon Y (2016) Comparing white-box and black-box test prioritization. In: Proceedings of the 38th International conference on software engineering, pp 523–534
Hu Q, Guo Y, Cordy M, Xie X, Ma W, Papadakis M, Le Traon Y (2021) Towards exploring the limitations of active learning: an empirical study. In: 2021 36th IEEE/ACM International conference on automated software engineering (ASE), IEEE, pp 917–929
Humbatova N, Jahangirova G, Tonella P (2021) Deepcrime: mutation testing of deep learning systems based on real faults. In: Proceedings of the 30th ACM SIGSOFT international symposium on software testing and analysis, pp 67–78
Jahangirova G, Tonella P (2020) An empirical evaluation of mutation operators for deep learning systems. In: 2020 IEEE 13th International conference on software testing, validation and verification (ICST), IEEE, pp 74–84
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia, pp 675–678
Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) Lightgbm: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst 30
K. Kelley K.J. Preacher On effect size Psychological Methods 2012 17 2 137 10.1037/a0028086
Kezebou L, Oludare V, Panetta K, Intriligator J, Agaian S (2022) Highway accident detection and classification from live traffic surveillance cameras: a comprehensive dataset and video action recognition benchmarking. In: Multimodal image exploitation and learning 2022, SPIE, vol 12100, pp 240–250
Kim B, Khanna R, Koyejo OO (2016) Examples are not enough, learn to criticize! criticism for interpretability. Adv Neural Inf Process Syst 29
Kim J, Feldt R, Yoo S (2019) Guiding deep learning system testing using surprise adequacy. In: 2019 IEEE/ACM 41st International conference on software engineering (ICSE), IEEE, pp 1039–1049
T.K. Kim T test as a parametric statistic Korean J Anesthesiol 2015 68 6 540 546 10.4097/kjae.2015.68.6.540
A. Krizhevsky I. Sutskever G.E. Hinton Imagenet classification with deep convolutional neural networks Commun ACM 2017 60 6 84 90 10.1145/3065386
Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011) Hmdb: a large video database for human motion recognition. In: 2011 International conference on computer vision, IEEE, pp 2556–2563
Li Y, Dang X, Tian H, Sun T, Wang Z, Ma L, Klein J, Bissyande TF (2022) Ai-driven mobile apps: an explorative study. arXiv:2212.01635
Li Y, Dang X, Ma L, Klein J, Traon YL, Bissyandé TF (2024) Test input prioritization for 3d point clouds. ACM Trans Softw Eng Methodol
Li Z, Ma X, Xu C, Cao C, Xu J, Lü J (2019) Boosting operational dnn testing efficiency through conditioning. In: Proceedings of the 2019 27th ACM Joint meeting on European software engineering conference and symposium on the foundations of software engineering, pp 499–509
L. Liberti C. Lavor N. Maculan A. Mucherino Euclidean distance geometry and applications SIAM Rev 2014 56 1 3 69 3246296 10.1137/120875909
W. Liu Z. Wang X. Liu N. Zeng Y. Liu F.E. Alsaadi A survey of deep neural network architectures and their applications Neurocomputing 2017 234 11 26 10.1016/j.neucom.2016.12.038
Lou Y, Hao D, Zhang L (2015) Mutation-based test-case prioritization in software evolution. In: 2015 IEEE 26th International symposium on software reliability engineering (ISSRE), IEEE, pp 46–57
Lou Y, Chen J, Zhang L, Hao D (2019) A survey on regression test-case prioritization. In: Advances in computers, vol 113, Elsevier, pp 1–46
Luo Q, Moran K, Poshyvanyk D (2016) A large-scale empirical comparison of static and dynamic test case prioritization techniques. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering, pp 559–570
Ma L, Juefei-Xu F, Zhang F, Sun J, Xue M, Li B, Chen C, Su T, Li L, Liu Y et al (2018a) Deepgauge: multi-granularity testing criteria for deep learning systems. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, pp 120–131
Ma L, Zhang F, Sun J, Xue M, Li B, Juefei-Xu F, Xie C, Li L, Liu Y, Zhao J, et al (2018b) Deepmutation: Mutation testing of deep learning systems. In: 2018 IEEE 29th International symposium on software reliability engineering (ISSRE), IEEE, pp 100–111
Ma L, Zhang F, Xue M, Li B, Liu Y, Zhao J, Wang Y (2018c) Combinatorial testing for deep learning systems. arXiv:1806.07723
W. Ma M. Papadakis A. Tsakmalis M. Cordy Y.L. Traon Test selection for deep learning systems ACM Trans Softw Eng Methodol (TOSEM) 2021 30 2 1 22 10.1145/3417330
Malkauthekar M (2013) Analysis of euclidean distance and manhattan distance measure in face recognition. In: Third International conference on computational intelligence and information technology (CIIT 2013), IET, pp 503–507
Mikołajczyk A, Grochowski M (2018) Data augmentation for improving deep learning in image classification problem. In: 2018 international interdisciplinary PhD workshop (IIPhDW), IEEE, pp 117–122
Minka TP (2003) A comparison of numerical optimizers for logistic regression. Unpublished draft pp 1–18
Q.H. Nguyen H.B. Ly L.S. Ho N. Al-Ansari H.V. Le V.Q. Tran I. Prakash B.T. Pham Influence of data splitting on performance of machine learning models in prediction of shear strength of soil Math Problems Eng 2021 2021 1 15
Papadakis M, Henard C, Traon YL (2014) Sampling program inputs with mutation analysis: going beyond combinatorial interaction testing. In: Seventh IEEE International Conference on Software Testing, verification and validation, ICST 2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA, IEEE Computer Society, pp 1–10. https://doi.org/10.1109/ICST.2014.11
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al (2019) Pytorch: an imperative style, high-performance deep learning library. Advances Neural Inf Process Syst 32
Paul S (2023) Video classification with transformers. https://keras.io/examples/vision/video_transformers/. Accessed 10 Jan 2024
Pei K, Cao Y, Yang J, Jana S (2017) Deepxplore: automated whitebox testing of deep learning systems. In: Proceedings of the 26th symposium on operating systems principles, pp 1–18
L. Peng H. Wang J. Li Uncertainty evaluation of object detection algorithms for autonomous vehicles Automotive Innovation 2021 4 3 241 252 10.1007/s42154-021-00154-0
Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. arXiv:1712.04621
F. Pillichshammer On the sum of squared distances in the euclidean plane Archiv der Mathematik 2000 74 6 472 480 1753546 10.1007/PL00000428
G. Rothermel R.H. Untch C. Chu M.J. Harrold Prioritizing test cases for regression testing IEEE Trans Softw Eng 2001 27 10 929 948 10.1109/32.962562
D. Salinas V. Flunkert J. Gasthaus T. Januschowski Deepar: probabilistic forecasting with autoregressive recurrent networks Int J Forecasting 2020 36 3 1181 1191 10.1016/j.ijforecast.2019.07.001
D. Shin S. Yoo M. Papadakis D.H. Bae Empirical evaluation of mutation-based test case prioritization techniques Softw Testing, Verification and Reliability 2019 29 1–2 10.1002/stvr.1695
C. Shorten T.M. Khoshgoftaar A survey on image data augmentation for deep learning J Big Data 2019 6 1 1 48 10.1186/s40537-019-0197-0
Soomro K, Zamir AR, Shah M (2012) Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv:1212.0402
Sun Y, Huang X, Kroening D, Sharp J, Hill M, Ashmore R (2018) Testing deep neural networks. arXiv:1803.04792
Taylor L, Nitschke G (2018) Improving deep learning with generic data augmentation. In: 2018 IEEE Symposium series on computational intelligence (SSCI), IEEE, pp 1542–1547
Team O (2023) Open source computer vision library. https://github.com/opencv/opencv/. Accessed May 2023
Tonella P, Avesani P, Susi A (2006) Using the case-based ranking methodology for test case prioritization. In: 2006 22nd IEEE international conference on software maintenance, IEEE, pp 123–133
Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497
Tran D, Ray J, Shou Z, Chang SF, Paluri M (2017) Convnet architecture search for spatiotemporal feature learning. arXiv:1708.05038
Tran D, Wang H, Torresani L, Ray J, LeCun Y, Paluri M (2018) A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6450–6459
Van Den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K et al (2016) Wavenet: a generative model for raw audio. arXiv:1609.03499 12
Wang D, Shang Y (2014) A new active labeling method for deep learning. In: 2014 International joint conference on neural networks (IJCNN), IEEE, pp 112–119
Wang H, Schmid C (2013) Action recognition with improved trajectories. In: Proceedings of the IEEE international conference on computer vision, pp 3551–3558
Wang L, Li W, Li W, Van Gool L (2018) Appearance-and-relation networks for video classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1430–1439
Z. Wang Y. Guan Multiscale convolutional neural-based transformer network for time series prediction Signal, Image and Video Processing 2024 18 2 1015 1025 10.1007/s11760-023-02823-5
Wang Z, You H, Chen J, Zhang Y, Dong X, Zhang W (2021) Prioritizing test inputs for deep neural networks via mutation analysis. In: 2021 IEEE/ACM 43rd International conference on software engineering (ICSE), IEEE, pp 397–409
Weiss M, Tonella P (2022) Simple techniques work surprisingly well for neural network test prioritization and active learning (replicability study). In: Proceedings of the 31st ACM SIGSOFT international symposium on software testing and analysis, pp 139–150
X. Xie J.W. Ho C. Murphy G. Kaiser B. Xu T.Y. Chen Testing and validating machine learning classifiers by metamorphic testing J Syst Softw 2011 84 4 544 558 10.1016/j.jss.2010.11.920
S. Yoo M. Harman Regression testing minimization, selection and prioritization: a survey Software Testing, Verification Reliability 2012 22 2 67 120 10.1002/stvr.430
Yoo S, Harman M, Tonella P, Susi A (2009) Clustering test cases to achieve effective and scalable prioritisation incorporating expert knowledge. In: Proceedings of the eighteenth international symposium on software testing and analysis, pp 201–212
Zeng D, Liu K, Lai S, Zhou G, Zhao J (2014) Relation classification via convolutional deep neural network. In: Proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers, pp 2335–2344