High-entropy alloys; Long Short-Term Memory; Machine learning; Molecular dynamics; Tensile stress; Dynamic learning; Dynamics simulation; Grainsize; High entropy alloys; Machine-learning; Mechanical; Multi-component alloy; Property; Short term memory; Strain-rates; Materials Science (all); Mechanics of Materials; Mechanical Engineering
Abstract :
[en] High-entropy alloys (HEAs) stand out from multi-component alloys due to their attractive microstructures and mechanical properties. In this investigation, molecular dynamics (MD) simulation and machine learning (ML) were used to ascertain the deformation mechanism of AlCoCrCuFeNi HEAs under the influence of temperature, strain rate, and grain sizes. First, the MD simulation shows that the yield stress decreases significantly as the strain and temperature increase. In other cases, changes in strain rate and grain size have less effect on mechanical properties than changes in strain and temperature. The alloys exhibited superplastic behavior under all test conditions. The deformity mechanism discloses that strain and temperature are the main sources of beginning strain, and the shear bands move along the uniaxial tensile axis inside the workpiece. Furthermore, the fast phase shift of inclusion under mild strain indicates the relative instability of the inclusion phase of hexagonal close-packed (HCP). Ultimately, the dislocation evolution mechanism shows that the dislocations are transported to free surfaces under increased strain when they nucleate around the grain boundary. Surprisingly, the ML prediction results also confirm the same characteristics as those confirmed from the MD simulation. Hence, the combination of MD and ML reinforces the confidence in the findings of mechanical characteristics of HEA. Consequently, this combination fills the gaps between MD and ML, which can significantly save time, human power, and cost to conduct real experiments for testing HEA deformation in practice.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Nguyen, Hoang-Giang; Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan ; Faculty of Engineering and Technology, Kien Giang University, Viet Nam
LE, Thanh-Dung ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Department of Electrical Engineering, Écolede Technologie Supérieure, University of Québec, Montréal, Canada
Nguyen, Hong-Giang; Institute of Testing and Quality Assurance in Education, Hue University, Hue City, Viet Nam
Fang, Te-Hua; Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan ; Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan
External co-authors :
yes
Language :
English
Title :
Mechanical properties of AlCoCrCuFeNi high-entropy alloys using molecular dynamics and machine learning
Paesani, F., Getting the right answers for the right reasons: Toward predictive molecular simulations of water with many-body potential energy functions. Acc. Chem. Res. 49:9 (2016), 1844–1851.
Hashemi, Z., Abouali, O., Ahmadi, G., Direct numerical simulation of particle–fluid interactions: a review. Iran. J. Sci. Technol., Trans. Mech. Eng. 41 (2017), 71–89.
Carmona-Orbezo, A., Dryfe, R.A., Understanding the performance of flow-electrodes for capacitive deionization through hydrodynamic voltammetry. Chem. Eng. J., 406, 2021, 126826.
Bomarito, G.F., Lin, Y., Warner, D.H., An atomistic modeling survey of the shear strength of twist grain boundaries in aluminum. Scr. Mater. 101 (2015), 72–75.
Krasnikov, V.S., Mayer, A.E., Dislocation dynamics in aluminum containing θ’phase: Atomistic simulation and continuum modeling. Int. J. Plast. 119 (2019), 21–42.
Davoodi, J., Dadashi, S., Yarifard, M., Molecular dynamics simulations of the melting of Al–Ni nanowires. Philos. Mag. 96:22 (2016), 2300–2310.
Bahramyan, M., Mousavian, R.T., Brabazon, D., Molecular dynamic simulation of edge dislocation-void interaction in pure Al and Al-Mg alloy. Mater. Sci. Eng.: A 674 (2016), 82–90.
Nguyen, H.G., Wu, M.J., Fang, T.H., Study on copper-to-copper bonding of three-dimensional integrated circuits using the quasicontinuum method. Phys. Scr., 99(6), 2024, 065114.
Nguyen, H.G., Fang, T.H., Doan, D.Q., Cyclic plasticity and deformation mechanism of AlCrCuFeNi high entropy alloy. J. Alloy. Compd., 940, 2023, 168838.
Bahramyan, M., Mousavian, R.T., Brabazon, D., Determination of atomic-scale structure and compressive behavior of solidified AlxCrCoFeCuNi high entropy alloys. Int. J. Mech. Sci., 171, 2020, 105389.
Nguyen, H.G., Fang, T.H., Machining mechanism and residual stress of AlCuCrFeNi alloy. Int. J. Mech. Sci., 2024, 109429.
Niendorf, T., Wegener, T., Li, Z., Raabe, D., Unexpected cyclic stress-strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scr. Mater. 143 (2018), 63–67.
Pickering, E.J., Stone, H.J., Jones, N.G., Fine-scale precipitation in the high-entropy alloy Al0. 5CrFeCoNiCu. Mater. Sci. Eng.: A, 645(65-71), 2015.
Afkham, Y., Bahramyan, M., Mousavian, R.T., Brabazon, D.J.M.S., Tensile properties of AlCrCoFeCuNi glassy alloys: A molecular dynamics simulation study. Mater. Sci. Eng.: A 698 (2017), 143–151.
Elgack, O., Almomani, B., Syarif, J., Elazab, M., Irshaid, M., Al-Shabi, M., Molecular dynamics simulation and machine learning-based analysis for predicting tensile properties of high-entropy FeNiCrCoCu alloys. J. Mater. Res. Technol. 25 (2023), 5575–5585.
Wang, Y., Li, R., Niu, P., Zhang, Z., Yuan, T., Yuan, J., Li, K., Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting. Intermetallics, 120, 2020, 106746.
Deng, N., Wang, J., Wang, J., He, Y., Beaugnon, E., Li, J., Effect of high magnetic field assisted heat treatment on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Mater. Lett., 303, 2021, 130540.
Zhao, Y.J., Qiao, J.W., Ma, S.G., Gao, M.C., Yang, H.J., Chen, M.W., Zhang, Y., A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater. Des. 96 (2016), 10–15.
Xie, L., Brault, P., Thomann, A.L., Yang, X., Zhang, Y., Shang, G., Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth. Intermetallics 68 (2016), 78–86.
Gao, Y., Urbassek, H.M., Scratching of nanocrystalline metals: A molecular dynamics study of Fe. Appl. Surf. Sci. 389 (2016), 688–695.
Shi, Y., Shu, Q., Liaw, P.K., Wang, M., Teng, C.L., Zou, H., Wang, J., Effect of annealing on mechanical and thermoelectric properties of a Al2CoCrFeNi high-entropy alloy. Mater. Des., 213, 2022, 110313.
Wang, F., Zhang, Y., Chen, G., Davies, H.A., Tensile and compressive mechanical behavior of a CoCrCuFeNiAl 0.5 high entropy alloy. Int. J. Mod. Phys. B 23:06n07 (2009), 1254–1259.
Wang, Z., Fang, Q., Li, J., Liu, B., Liu, Y., Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. J. Mater. Sci. Technol. 34:2 (2018), 349–354.
Xu, X.D., Liu, P., Guo, S., Hirata, A., Fujita, T., Nieh, T.G., Chen, M.W., Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0. 5 high-entropy alloy. Acta Mater. 84 (2015), 145–152.
Kim, Y.K., Choe, J., Lee, K.A., Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: Microstructure, anisotropic mechanical response, and multiple strengthening mechanism. J. Alloy. Compd. 805 (2019), 680–691.
Haghdadi, N., Primig, S., Annasamy, M., Cizek, P., Hodgson, P.D., Fabijanic, D.M., On the hot-worked microstructure of a face-centered cubic Al0. 3CoCrFeNi high entropy alloy. Scr. Mater. 178 (2020), 144–149.
Fang, Q., Yi, M., Li, J., Liu, B., Huang, Z., Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation. Appl. Surf. Sci. 443 (2018), 122–130.
Li, Y.X., Raymond Kwesi Nutor, Q.K., Zhao, X.P., Zhang, Q.P., Cao, S.S., Sohn, X.D., Wang, et al. Unraveling the deformation behavior of the Fe45Co25Ni10V20 high entropy alloy. Int. J. Plast., 165, 2023, 103619.
Wang, N., Nutor, R.K., Li, Y.X., Cao, Q.P., Ding, S.Q., Wang, X.D., Jiang, J.Z., Tuning mechanical properties of high entropy alloys by electro-pulsing method. J. Alloy. Compd., 902, 2022, 163684.
Li, Y., Chen, Y., Nutor, R.K., Wang, N., Cao, Q., Wang, X., Jiang, J.Z., Plasticity Improvement in a Co-Rich Co40Fe25Cr20Ni15 High-Entropy Alloy via Al Alloying. Materials, 16(3), 2023, 1149.
Manzoni, A.M., Singh, S., Daoud, H.M., Popp, R., Völkl, R., Glatzel, U., Wanderka, N., On the path to optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti high entropy alloy family for high temperature applications. Entropy, 18(4), 2016, 104.
Lu, L., Li, J., Su, C.Y., Sun, P.Y., Chang, L., Zhou, B.B., Zhou, C.Y., Research on fatigue crack growth behavior of commercial pure titanium base metal and weldment at different temperatures. Theor. Appl. Fract. Mech. 100 (2019), 215–224.
Chen, D.H., Fan, X.L., Evaluation of the brittle failure of blunt U-shaped notch under mode I loading. Eng. Fract. Mech. 214 (2019), 40–61.
AlMotasem, A.T., Bergström, J., Gåård, A., Krakhmalev, P., Holleboom, L.J., Tool microstructure impact on the wear behavior of ferrite iron during nanoscratching: An atomic level simulation. Wear 370 (2017), 39–45.
Wang, C.H., Chao, K.C., Fang, T.H., Stachiv, I., Hsieh, S.F., Investigations of the mechanical properties of nanoimprinted amorphous Ni–Zr alloys utilizing the molecular dynamics simulation. J. Alloy. Compd. 659 (2016), 224–231.
Keith, J.A., Vassilev-Galindo, V., Cheng, B., Chmiela, S., Gastegger, M., Müller, K.R., Tkatchenko, A., Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 121:16 (2021), 9816–9872.
Mayer, A.E., Krasnikov, V.S., Pogorelko, V.V., Dislocation nucleation in Al single crystal at shear parallel to (111) plane: Molecular dynamics simulations and nucleation theory with artificial neural networks. Int. J. Plast., 139, 2021, 102953.
Zhang, Y., Yue, Y., Simulation and Calculation for Predicting Structures and Properties of High-Entropy Alloys. 2023, IntechOpen, 10.5772/intechopen.105963.
Chen, J., Niu, P., Liu, Y., Lu, Y., Wang, X., Peng, Y., Liu, J., Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Mater. Des. 94 (2016), 39–44.
Nguyen, H.G., Fang, T.H., Plastic deformation in nanoindentation of Alx (CuCrFeNi) 1− x high entropy alloy. J. Alloy. Compd., 968, 2023, 172172.
Grønbech-Jensen, N., Complete set of stochastic Verlet-type thermostats for correct Langevin simulations. Mol. Phys., 118(8), 2020, e1662506.
Grønbech-Jensen, N., Farago, O., Defining velocities for accurate kinetic statistics in the Grønbech-Jensen Farago thermostat. Phys. Rev. E, 101(2), 2020, 022123.
Purse, M., Edmund, G., Hall, S., Howlin, B., Hamerton, I., Till, S., Reactive molecular dynamics study of the thermal decomposition of phenolic resins. J. Compos. Sci., 3(2), 2019, 32.
Patra, P.K., Bhattacharya, B., Nonergodicity of the Nose-Hoover chain thermostat in computationally achievable time. Phys. Rev. E, 90(4), 2014, 043304.
Daw, M.S., Foiles, S.M., Baskes, M.I., The embedded-atom method: a review of theory and applications. Mater. Sci. Rep. 9:7-8 (1993), 251–310.
Utt, D., Stukowski, A., Albe, K., Grain boundary structure and mobility in high-entropy alloys: A comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe. Acta Mater. 186 (2020), 11–19.
Doan, D.Q., Fang, T.H., Chen, T.H., Influences of grain size and temperature on tribological characteristics of CuAlNi alloys under nanoindentation and nanoscratch. Int. J. Mech. Sci., 185, 2020, 105865.
Lin, Z., Johnson, R.A., Zhigilei, L.V., Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses. Phys. Rev. B, 77(21), 2008, 214108.
Li, J., Fang, Q., Liu, B., Liu, Y., Liu, Y., Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Adv. 6:80 (2016), 76409–76419.
Li, J., Fang, Q., Liu, B., Liu, Y., Liu, Y., Atomic-scale analysis of nanoindentation behavior of high-entropy alloy. J. Micromech. Mol. Phys., 1(01), 2016, 1650001.
Zhang, S., Xu, Y., Liu, X., Luo, S.N., Competing roles of interfaces and matrix grain size in the deformation and failure of polycrystalline Cu–graphene nanolayered composites under shear loading. Phys. Chem. Chem. Phys. 20:36 (2018), 23694–23701.
Schiøtz, J., Di Tolla, F.D., Jacobsen, K.W., Softening of nanocrystalline metals at very small grain sizes. Nature 391:6667 (1998), 561–563.
Mendelson, M.I., Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc. 52:8 (1969), 443–446.
Pham, A.V., Fang, T.H., Tran, A.S., Chen, T.H., Structural and mechanical characterization of sputtered CuxNi100-x thin film using molecular dynamics. J. Phys. Chem. Solids, 147, 2020, 109663.
Honeycutt, J.D., Andersen, H.C., Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91:19 (1987), 4950–4963.
Qi, Y., Xu, H., He, T., Wang, M., Feng, M., Atomistic simulation of deformation behaviors polycrystalline CoCrFeMnNi high-entropy alloy under uniaxial loading. Int. J. Refract. Met. Hard Mater., 95, 2021, 105415.
Wang, Z., Li, J., Fang, Q., Liu, B., Zhang, L., Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Appl. Surf. Sci. 416 (2017), 470–481.
Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng., 18(1), 2009, 015012.
Le, T.D., Noumeir, R., Quach, H.L., Kim, J.H., Kim, J.H., Kim, H.M., Critical temperature prediction for a superconductor: A variational bayesian neural network approach. IEEE Trans. Appl. Supercond. 30:4 (2020), 1–5.
Masson, J.F., Biggins, J.S., Ringe, E., Machine learning for nanoplasmonics. Nat. Nanotechnol. 18:2 (2023), 111–123.
Montgomery, D.C., Peck, E.A., Vining, G.G., Introduction to linear regression analysis. 2021, John Wiley & Sons.
Gunn, S.R., Support vector machines for classification and regression. ISIS Tech. Rep. 14:1 (1998), 5–16.
Friedman, J.H., Greedy function approximation: a gradient boosting machine. Ann. Stat., 2001, 1189–1232.
Albawi, S., Mohammed, T.A., & Al-Zawi, S. (2017, August). Understanding of a convolutional neural network. In 2017 International Conference on Engineering and Technology (ICET) (pp. 1-6). Ieee.
Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J., A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst., 2021.
Yu, Y., Si, X., Hu, C., Zhang, J., A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31:7 (2019), 1235–1270.
Qi, Y., He, T., Xu, H., Hu, Y., Wang, M., Feng, M., Effects of microstructure and temperature on the mechanical properties of nanocrystalline CoCrFeMnNi high entropy alloy under nanoscratching using molecular dynamics simulation. J. Alloy. Compd., 871, 2021, 159516.
Li, L., Fang, Q., Li, J., Liu, B., Liu, Y., Liaw, P.K., Lattice-distortion dependent yield strength in high entropy alloys. Mater. Sci. Eng.: A, 784, 2020, 139323.
Du, X., Lu, X., Shuang, S., Wang, Z., Xiong, Q.L., Kang, G., Zhang, X., Cyclic plasticity of CoCrFeMnNi high-entropy alloy (HEA): A molecular dynamics simulation. Int. J. Appl. Mech., 13(01), 2021, 2150006.
Sharma, A., Balasubramanian, G., Dislocation dynamics in Al0. 1CoCrFeNi high-entropy alloy under tensile loading. Intermetallics 91 (2017), 31–34.
Xie, L., Wu, G., Liaw, P.K., Wang, W., Li, D., Peng, Q., Zhang, Y., Temperature gradient enhances the solidification process and properties of a CoCrFeNi high-entropy alloy: Atomic insights from molecular dynamics simulations. Comput. Mater. Sci., 231, 2024, 112538.
Fu, Z., Chen, W., Wen, H., Zhang, D., Chen, Z., Zheng, B., Lavernia, E.J., Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7. 5Cu17. 5 high-entropy alloy. Acta Mater. 107 (2016), 59–71.
Fang, Q., Chen, Y., Li, J., Jiang, C., Liu, B., Liu, Y., Liaw, P.K., Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys. Int. J. Plast. 114 (2019), 161–173.