Article (Périodiques scientifiques)
When Multitask Learning Meets Partial Supervision: A Computer Vision Review
Fontana, Maxime; SPRATLING, Michael; Shi, MJ
2024In Proceedings of the IEEE, 112 (6), p. 516-543
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
2307.14382v2.pdf
Preprint Auteur (4.05 MB) Licence Creative Commons - Attribution, Pas d'Utilisation Commerciale, Pas de Modification
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Optimization; Computer vision; deep learning (DL); minimal supervision; multitask learning (MTL); visual understanding
Résumé :
[en] Multitask learning (MTL) aims to learn multiple tasks simultaneously while exploiting their mutual relationships. By using shared resources to simultaneously calculate multiple outputs, this learning paradigm has the potential to have lower memory requirements and inference times compared to the traditional approach of using separate methods for each task. Previous work in MTL has mainly focused on fully supervised methods, as task relationships (TRs) can not only be leveraged to lower the level of data dependency of those methods but also improve the performance. However, MTL introduces a set of challenges due to a complex optimization scheme and a higher labeling requirement. This article focuses on how MTL could be utilized under different partial supervision settings to address these challenges. First, this article analyses how MTL traditionally uses different parameter sharing techniques to transfer knowledge in between tasks. Second, it presents different challenges arising from such a multiobjective optimization (MOO) scheme. Third, it introduces how task groupings (TGs) can be achieved by analyzing TRs. Fourth, it focuses on how partially supervised methods applied to MTL can tackle the aforementioned challenges. Lastly, this article presents the available datasets, tools, and benchmarking results of such methods. The reviewed articles, categorized following this work, are available at https://github.com/Klodivio355/MTL-CV-Review .
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Fontana, Maxime ;  Department of Informatics, King’,s College London, London, U.K.
SPRATLING, Michael  ;  University of Luxembourg ; Department of Informatics, King’,s College London, London, U.K.
Shi, MJ ;  College of Electronic and Information Engineering and Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
When Multitask Learning Meets Partial Supervision: A Computer Vision Review
Date de publication/diffusion :
2024
Titre du périodique :
Proceedings of the IEEE
ISSN :
0018-9219
eISSN :
1558-2256
Maison d'édition :
Institute of Electrical and Electronics Engineers (IEEE)
Volume/Tome :
112
Fascicule/Saison :
6
Pagination :
516-543
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 02 septembre 2024

Statistiques


Nombre de vues
103 (dont 0 Unilu)
Nombre de téléchargements
113 (dont 0 Unilu)

citations Scopus®
 
11
citations Scopus®
sans auto-citations
11
OpenCitations
 
0
citations OpenAlex
 
9
citations WoS
 
8

Bibliographie


Publications similaires



Contacter ORBilu