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Abstract—Multi-Task Learning (MTL) aims to learn multiple
tasks simultaneously while exploiting their mutual relationships.
By using shared resources to simultaneously calculate multiple
outputs, this learning paradigm has the potential to have lower
memory requirements and inference times compared to the
traditional approach of using separate methods for each task.
Previous work in MTL has mainly focused on fully-supervised
methods, as task relationships can not only be leveraged to
lower the level of data-dependency of those methods but they
can also improve performance. However, MTL introduces a
set of challenges due to a complex optimisation scheme and a
higher labeling requirement. This review focuses on how MTL
could be utilised under different partial supervision settings
to address these challenges. First, this review analyses how
MTL traditionally uses different parameter sharing techniques
to transfer knowledge in between tasks. Second, it presents
the different challenges arising from such a multi-objective
optimisation scheme. Third, it introduces how task groupings
can be achieved by analysing task relationships. Fourth, it
focuses on how partially supervised methods applied to MTL can
tackle the aforementioned challenges. Lastly, this review presents
the available datasets, tools and benchmarking results of such
methods. The reviewed papers, categorised following our work,
are available: https://github.com/Klodivio355/MTL-CV-Review.

Index Terms—Multi-Task Learning; Deep Learning; Minimal
Supervision; Autonomous Driving; Visual Understanding; Med-
ical Imaging; Robotic Surgery

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have achieved great
success in numerous and diverse computer vision tasks such as
classification [1, 2, 3, 4], semantic segmentation [5, 6, 7, 8] and
object-detection [9, 10, 8]. These models have the common
characteristic of being task specific. However, systems should
ideally be capable of sharing knowledge between tasks.

Multi-Task Learning (MTL) [11] aims at providing compu-
tational models able to learn multiple tasks. To achieve this,
MTL seeks to partition representations into task-agnostic and
task-specific features so that each task can utilise a common
representation. This is justified by previous work investigating
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the learning of representations in CNNs that distinguish two
types of features. Firstly, shallow layers, which learn simple
patterns (i.e., edges and colors), are task-agnostic and should
be shared. Secondly, deep layers which learn complex patterns
(i.e., objects), should be kept task-specific [12]. However,
determining how to partition a specific network hierarchy is
not trivial and depends on the tasks at hand [13]. Nonetheless,
MTL could help discover relationships and structure amongst
tasks [14, 15] which could improve performance compared
to task-specific models. From a computational efficiency per-
spective, sharing representations results in enhanced memory
efficiency and a significant reduction in inference time as
shared representations only need to be inferred once to predict
multiple tasks.

Deep Learning (DL) models generally suffer from a high
data-dependency during training, but acquiring large volumes
of labeled data is not always feasible. This has motivated
the development of various partial supervision configurations,
with the unifying goal to create data-efficient DL solutions
[16, 17, 18, 19, 20]. MTL brings a new opportunity for such
techniques: by leveraging relationships between tasks, MTL
can use the available supervisory signals for one task to aid
the learning of other tasks.

Applications. MTL is currently being employed in Com-
puter Vision (CV) due to its success in achieving advanced
scene understanding. Its most studied area is urban scene
detection [21, 22, 23, 24], specifically to address autonomous
driving related tasks such as road segmentation and object
detection. MTL has also been successfully used in robotics,
specifically in robotic-assisted surgery [25, 26] to predict
diverse effects from a surgery scene (instruments, tissues etc.).
Additionally, this paradigm has been heavily studied in the
context of face recognition [27, 28, 29, 30] to enable, for
instance, the simultaneous prediction of facial expression, face
detection, and identification. MTL has also been explored in
medical applications, such as in medical image segmenta-
tion in the area of gastroenterology for detection of polyps
[31, 32, 33], or in cardiology for atrial segmentation [34]. In
addition, MTL has been applied to non-CV scenarios such as
Natural Language Processing (NLP) [35, 36, 37, 38, 39, 40]
and recommendation systems [41, 42, 43].

Related Work. MTL has been the subject of numerous and
diverse review papers [44, 45, 46, 47, 48, 49, 50]. Some of
these previous works have focused on specific domains such
as NLP. For instance, Chen et al. [50] focus on MTL-based
solutions for various NLP tasks and provide a classification
for available solutions, whilst Zhang et al. [49] focus on NLP-
related training procedures and task relatedness. Alternatively,
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Fig. 1. Overview of the literature review structure. Firstly, we introduce Multi-Task Parameter Sharing in Section II. Secondly, we review Optimisation
Challenges in Section III. Thirdly, we review how task relationships can be be used to group them in Section IV. Finally, we introduce, in Section V, the
different partially-supervised computer vision methods in MTL.

Multi-Task Learning Reviews

Deep-Learning Oriented Computer-Vision Oriented Others

[44], 2017
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[46], 2022

[47], 2021

DL / CV / Partially-
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Ours, 2024
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NLP: [49], 2022 ; 
[50], 2021

Fig. 2. Overview of the different reviews on Multi-Task Learning.

Vithayathil Varghese and Mahmoud [48] review MTL in
the domain of deep reinforcement learning (DRL). Other
published reviews have focused on MTL from an optimi-
sation perspective, for instance by comparing the different
loss weighting techniques [51] or by evaluating task-specific
transfer learning strategies [52, 53].

Some works have, however, aimed at providing a less con-
strained review of MTL. For instance, [44, 45] reviews fully-
supervised MTL methods as well as the inherent optimisation
challenges under the deep learning framework. Moreover, [46]
provides a full-fledged and comprehensive review on both
linear and DL solutions as well as the underlying optimisation
techniques.

Previous work has focused on area more closely related to
this study. For example, a CV-focused review [47] analyses
how MTL has been applied to pixel-wise prediction tasks
and provides benchmark results on common fully-supervised
MTL architecture. [47] further differentiates MTL architec-
tures based on the location where task interactions take
place (encoder vs decoder). This paper, in contrast, does not
highlight such differentiation as architectural issues are not
the focus of our analysis. This review instead focuses on
partially-supervised learning paradigms applied to CV tasks in
a multi-task fashion. Although the vast majority of multi-task

learning solutions has been applied to dense prediction tasks,
this work aims at providing a comprehensive understanding
of how MTL’s future improvement might be underpinned by
increasing the number and diversity of tasks. This study is
the first, to the best of our knowledge, to focus on partially-
supervised MTL for CV.
The literature for this review was selected through a compre-
hensive search of academic databases and was further refined
based on the relevance to the central themes of this study and
the author’s expert judgment, ensuring the inclusion of both
foundational and cutting-edge research of significant interest.

Paper overview. Section II reviews traditional fully-
supervised MTL methods from a parameter-sharing perspec-
tive. Section III introduces challenges arising from such multi-
objective optimisation. Section IV analyses relationships be-
tween common CV tasks, and how task groupings can be
used to identify mutually beneficial tasks. Section V discusses
how MTL can be used under partially-supervised paradigms.
Last, Section VI-A is dedicated to an introduction to available
datasets, code repositories and tools as well as a comparison
of the solutions introduced in this review. We provide an
structural overview of this work in Fig. 1.

Furthermore, we provide an outline of the varied landscape
of related MTL reviews, contextualizing our research within
this framework. See Fig. 2 for more details.

II. MULTI-TASK PARAMETER SHARING

In order to understand the underlying challenges to MTL,
Section II-A reviews cross-task parameter sharing introduced
in traditional settings. Subsequently, Section II-B will review
feature fusion paradigms under two major frameworks: CNN
and Vision Transformers. Then, Section II-C investigates how
learned representations can be partitioned and further shared.
Finally, Section II-D will focus on architecture search based
strategies as a way to share parameters across different tasks.

A. Traditional Parameter Sharing
1) Sparse Multi-Task Representations: The core of the

early work in MTL has focused on obtaining a sparse multi-
task parameter matrix generally obtained by linear models
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such as support vector machines (SVM) or ridge regression.
Concretely, a parameter matrix is said to be sparse if a large
proportion of its values are close to 0. The sparsity objective
is based on the assumption that only a low-dimensional sub-
representation of parameters should be shared across all the
tasks. For example, Multi-Task Feature Learning (MTFL)
[54] defines the objective as an optimisation using the L1
regularisation. Considering a linear feature matrix U ∈ Rd×d
where d is the parameter dimension, MTFL [54] aims at
learning a transformation matrix A ∈ Rd×T where T is the
number of tasks, such that W = UA, with W ∈ Rd×T .
Formally, such objective can be defined as the minimisation
of the following function:

f(A,U) =

T∑
t=1

m∑
i=1

L(yti, at · (UTxti)) + γ||A||21, (1)

where the first term is the empirical error for the ith data-
label pair (xti, yti) for a task t. In the second term, the trans-
formation matrix A is constrained by the the regularisation
term, which is itself controlled by the non-negative parameter
γ. As a result, the sparsity imposed on the transformation
matrix A will lead to most rows in A being equal to 0.
After the transformation W = UA, these rows will represent
task-specific parameters whilst others represent the shared
low-dimensional subspace W across tasks. However, such
objective only partition features. MTFL [54] aims to jointly
learn the parameters and their partition. The resulting strategy
is therefore to minimise the function f over the parameter U .
However, although such strategy results in a bi-convex on A
and U individually, the minimisation optimisation objective is
not, rendering the optimisation challenging. Therefore, MTFL
[54] introduces a convex formulation to their problem. To
a further extent, the authors suggest non-linear features can
be obtained through the use of kernel learning [55] therefore
allowing the model to learn non-linear relationship between
parameters.

Following this sparsity objective, previous work has inves-
tigated using different linear models such as the Group Lasso
Method [56], by improving over the convergence speed of
the sparsity objective, or by minimising the trace-norm of A
[57, 58]. Nonetheless, this paradigm is essentially constrained
to only a small subset of shared features. Moreover, it also
assumes tasks are related as some features are shared anyway.
However, intuition suggests it should not always be the case.
To counter this, some works [59, 60] allow for an adaptive
and partial overlapping of the task parameters to only share
parameters when necessary.

2) Clustering: To mitigate the a-priori assumption that all
tasks are related, some works have investigated how to identify
task relationships under a task clustering framework. Such
methods are motivated by the assumption that similar tasks
have similar weight vectors. Obtaining such clusters helps
narrow down the search space for the shared low-dimensional
parameter space. For instance, Thrun and O’Sullivan [61] in-
troduce a Task Clustering (TC) algorithm based on K-Nearest
Neighbours (KNN) in which information is shared within
clusters. Specifically, given two tasks T1 and T2, performance

gain (PG) is calculated for the task pair through transfer
learning (i.e., PGT1→T2

if knowledge is transferred from T1

to T2). The task clusters are formed based on such pair-wise
performance gains. Then, knowledge transfer is performed
only within the most related tasks. Similarly, Xue et al. [62]
introduce an automatic identification of such clusters based
on the Dirichlet Process (DP) prior distribution. Later, with
the aim of providing a convex formulation to this framework,
Jacob et al. [63] suggest regularising the multi-task parameter
space W by imposing 3 different norms to model several
orthogonal properties: the mean weight vector size Ωmean
which measures how large the weight vectors are on average
by computing the trace over the T -task weight representation,

Ωmean(W ) = tr(WUWT ), (2)

where U ∈ RT×T is a projection matrix which has all its
entries equal 1

T . Subsequently, the between-cluster and the
within-cluster variance which respectively measures how close
together the clusters are and how dense the clusters are. These
measures can be formulated as follows:

Ωbetween(W ) = tr(W (M − U)WT ), (3)

Ωwithin(W ) = tr(W (I −M)WT ), (4)

where M = L − I for which L is the laplacian matrix and
I is an identity matrix. Finally, Jacob et al. [63] choose to
combine these measures through a weighted sum as part of
their minimisation objective :

min

 ∑
y∈{mean,between,within}

γyΩy(W )

 , (5)

where λ is a weight parameter for the norm Ω over the
weight matrix W . This multi-criteria weighting leads to a
decomposition of W such that similar tasks are close in
parameter space.

To explicitly model the distributions of the tasks to better
identify their relationships, Micchelli and Pontil [64], Gu
et al. [65] introduce a kernel learning strategy to find a
Reproducing Kernel Hilbert Space (RKHS) in which task-
respective distributions are close together in parameter space
if their relatedness is high enough. Finally, Zhou et al. [66]
interestingly derive the relationships between Clustered Multi-
Task Learning (CMTL) in which similar tasks are clustered
and sparse multi-task representations are learnt within clusters,
as seen in Section II-A1. The work introduces three algorithms
to perform CMTL and demonstrates how the clustering ap-
proach is significantly more efficient than the low-dimensional
subspace learning solution, especially under high-dimensional
data settings.

3) Common-Trunk: Early DL methods involved attaching
task-specific heads to a CNN encoder’s latent representation
as shown in Fig. 3 (top) [11]. For example, Ubernet [67]
introduced a CNN designed to tackle seven CV tasks. Many
subsequent studies followed this design [34, 68, 21, 69]. This
architecture shares a CNN backbone which gets updated by
gradients aggregated by multiple tasks. As a result, all the
tasks pull features from this backbone, which makes a global
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Task 1
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Fig. 3. Multi-Task Learning has mainly been divided into two architectural
design schemes. Hard-parameter sharing (top) splits a shared backbone
into task-specific heads which receives input from from the same set of
features. Soft-parameter sharing (bottom) uses task-specific networks, but
allows information to be shared between them.

learned representation critical, although not trivial to obtain as
different tasks need different representations to perform well.
Hence, recent works suggest sharing parameters as part of
multi-task encoder-decoder architectures at the decoder level
[70, 71, 72, 73, 74] to exchange high-level semantic fea-
tures. For instance, Prediction-and-distillation Network (PAD-
NET) [70] suggests sharing knowledge after predictions and
allows the training of a distillation module to learn what to
share. Vandenhende et al. [72] expend on this idea whilst
incorporating multi-scale prediction for better dense prediction
task performance. Similarly, at the prediction level, Pattern-
Affinitive-Propagation (PAP) [71] proposes learning pair-wise
task relationship to produce affinity matrices for each task to
further guide the sharing strategy.

B. Feature Fusion

This section introduces parameter fusion techniques used in
the two most pre-dominant vision models. First, Section II-B1
introduces methods to share parameters across CNNs. Then,
Section II-B2 reviews recent attention-based methods to fuse
parameters in Vision Transformers (ViTs) [75].

1) CNN Sharing Strategies: Cross-stitch Networks [13]
introduce a model-agnostic fusion technique. As opposed to
the hard-parameter sharing paradigm, in which task-decoders
are attached to a shared backbone encoder (Fig. 3 (top)), Misra
et al. [13] introduce a soft-parameter sharing paradigm in
which task networks are processed independently and through
which parameter fusion is executed in parallel at a similar
level of abstraction (Fig. 3 (bottom)). Given two task activation
maps A and B, cross-stitch units [13] compute the dot product
between a vector representing their respective values xi,jA and
xi,jB at a shared location (i, j) and a trainable weight matrix
W ∈ Rk×k , where k is the number of tasks. The values
in W represent task-specific (diagonal entries) and shared
parameters (non-diagonal entries). The process for k = 2 is
illustrated as:

Fig. 4. Two task-specific CNN models CNNi and CNNj . The NDDR-
layer [77] first concatenates the representations of the respective convolutional
blocks. 1 × 1 convolutions are then run on this concatenation, one per task.
Last, after batch normalisation, the features are propagated on to the next
convolutional block of each model.

[
x̃i,jA

x̃i,jB

]
=

[
wAA wAB

wBA wBB

][
xi,jA

xi,jB

]
. (6)

Despite being a locally-flexible, easy-to-implement and model-
agnostic method, its design results in a complex and expensive
model. First, studies investigating CNN layers have shown that
shallow layers are usually task-agnostic and cross-stitch units
would eventually represent such task-agnostic parameters, but
at an expensive of training cost. Second, the overall solution
is expensive as the training costs increase with the number of
tasks and the size of the network.

Sluice Networks [76] generalise cross-stitch units by in-
creasing the flexibility and sharing parameter space. In partic-
ular, Ruder et al. [76] allow for selective sharing of layers,
parameter subspaces and skip connections. To expand on
this soft-parameter sharing structure, Gao et al. [77] propose
a solution based on the principle of Neural Discriminative
Dimensionality Reduction (NDDR). This principle attempts
to minimise the number of features whilst keeping the maxi-
mum amount of representative information, similarly to Lin-
ear Discriminant Analysis (LDA) or Principal Component
Analysis (PCA). Therefore, NDDR [77] formulates the multi-
task feature fusion problem as a discriminative dimensionality
reduction problem by first concatenating parallel feature maps,
then task-specific 1×1 convolutions [78] are run on such rep-
resentation to perform dimensionality reduction. In addition,
the authors employ batch normalisation and weight decay to
stabilise learning. This method is illustrated in Fig. 4.

As a result, NDDR [77] enables learnable local representa-
tion parameter sharing in a similar manner to cross-stitch and
sluice networks [13, 76]. However, these techniques hypothe-
sise that all tasks should be processed together, computational
cost could therefore be reduced using prior knowledge on task
groupings to avoid redundant computation.

2) Attention-based Sharing Strategies: With the advent of
the transformer model [79], originally applied to NLP, and
subsequently to CV [75], there has been a great improvement
in dense prediction tasks in CV [80, 81, 82, 83] due to
the non-local feature acquisition inherent to these models as
well as their capacity to exploit long-range dependencies.
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Similar to the aforementioned soft-parameter sharing tech-
niques [13, 76, 77], Multi-Task Attention Network (MTAN)
first trains a single CNN network which is designed to learn
general features. Then, task-specific networks are derived by
attaching attention modules, which learn soft-attention masks
over the shared features, to each convolutional operation of
the aforementioned CNN network.

Unified Transformer (UniT) [84] learns a multi-modal
encoder-decoder transformer model. UniT [84] learns
modality-specific encoders using multi-head self-attention, the
modalities are then simply concatenated before a joint decoder
performs cross-attention to mix the multiple representations.
Similarly, Multi-Task Transformer Network [85] (MulT) per-
forms feature fusion at the decoding level and introduces
a shared attention mechanism. Specifically, MulT chooses a
reference task tref , then the reference task encoded represen-
tation x is used to compute a query qt

ref

x and a key kt
ref

x .
Let us denote vt the values for the other tasks based on the
previous stage output. The attention values for this task are
then calculated as:

At
ref

x = softmax

qt
ref

x · ktrefx

T√
Ctref
qkv

+Btref . (7)

Subsequently, for any task t, the shared representation is
obtained as: x̃t = At

ref

x vt. The term xt is then used for the
multi-head attention.

MTFormer [86] also chooses to compute cross-task inter-
actions at task-specific heads. However, the authors choose to
concatenate the projected representations at each transformer
block, based on multi-head self-attention operations. To merge
the attention maps of n tasks, the authors show it is beneficial
to consider self-task attention as a primary task and to consider
cross-task attention as playing an auxiliary role in order to
perform cross-task feature propagation. To reflect this, the
authors choose to reduce the number of projected feature
channels C of auxiliary tasks such that C ′ = C

n−1 , whilst
keeping the original dimension for the main task.

Finally, motivated by the success of pyramid-based
transformer-based encoded representations for dense predic-
tion tasks [82, 80, 81], InvPT [74] proposes a cross-scale self-
attention mechanism for multiple tasks. In this method, the
attention maps are linearly combined by learnable weights,
the result is also constrained by a residual feature map from
the input image.

C. Knowledge Decomposition

Knowledge Decomposition aims at partitioning a large set
of features into smaller and meaningful components. In the
context of MTL, one might be interested in recycling large
models into smaller multi-task models. First, Section II-C1
reviews how tensor factorization can operate over CNN ker-
nels to construct MTL components. Second, Section II-C2
introduces methods to transfer information from a large single-
task teacher model to a smaller multi-task student model. Last,
Section II-C3 reviews how adapters can be used to achieve
multi-task continual learning by fine-tuning a large single-task
model.

1) Tensor Factorization: Section II-A1 reviewed solutions
employing the low-rank approximation of a multi-task weight
matrix using linear models. Deep Multi-Task Representation
Learning (DMTRL) [87] generalises this idea to tensors (N-
dimension arrays with N ∈ N and more specifically N ≥ 3).
In fact, as per the nature of a CNN, kernels are N-dimension
tensors and fully convolutional (FC) layers are 2-way tensors,
stacking those by a number of tasks T , usually resulting in
large tensors. Tensor Factorization (TF) is a generalisation of
some form of matrix decomposition, such as Singular Value
Decomposition (SVD) [88]. DMTRL [87] accomplishes soft-
parameter sharing in a layer-wise manner between parallel
and identical CNNs, similarly to [13, 77]. First, single-task
CNNs are trained, then layer-wise parameters are concatenated
during backpropagation and subsequently fed as input to
SVD-based solutions for decomposition. DMTRL [87] uses
multiple sharing strategies, including one based on the Tucker
Decomposition (TD) [89], to learn parameters of this SVD-
based solution to generate the decomposed units.

Further to this strategy, Yang and Hospedales [90] use the
tensor trace norm (the sum of a tensor’s singular values)
as a proxy of the tensor rank on the layer-wise parameters’
concatenation. In this way, each CNN is encouraged to use
the other network’s parameters. However, these methods have
the same drawback as the previously introduced parameter-
fusion based techniques [13, 77, 76] as parameters are shared
in a layer-wise fashion which introduces constraints including
architectural parallelism and locality in the parameter sharing
strategy.

2) Knowledge Distillation: Another perspective to parame-
ter sharing is to design strategies based on Knowledge Distil-
lation (KD). KD is a form a model compression that transfers
knowledge from a large model to a smaller model. Early KD
work in MTL explored how to compress DRL methods. For
instance, [91, 92, 93] introduced a policy distillation strategy
to derive lighter multi-task policies from task-specific deep Q-
network (DQN) policies. However, as per the nature of DRL,
these strategies approach tasks for which the set of actions was
finite and would therefore struggle in more complex prediction
visual tasks. As a result, Xu et al. [70] introduce, as part of a
multi-task multi-modal network, a distillation module to merge
predictions from intermediate and complementary tasks from
different modalities to subsequently pass representations on
to task-specific decoders. The variations for this distillation
module include cross-prediction reasoning as well as attention-
guided mechanisms. Hence, Li and Bilen [94] suggest a two-
step solution in which: (1) task-specific models are first trained
before freezing their respective parameters; (2) a multi-task
model is optimized to minimise a multi-loss objective through
the use of adaptors (reviewed in Section II-C3) that align
task-specific and task-agnostic parameters together in order
for the multi-task model to use the same features as the task-
specific models. Following a similar strategy, Ghiasi et al. [95]
extend this strategy to a self-supervised pre-training procedure
through the use of intermediate pseudo-labeling.

Recently, Yang et al. [96] introduce a new alternative to KD,
namely, Knowledge Factorization (KF). Instead of distilling
knowledge from a task-specific teacher model to a multi-
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task student model, KF aims at decomposing a pre-trained,
large multi-task model into k task-disentangled factor networks
modelling both task-agnostic and task-specific parameters of
the teacher model. The resulting lightweight networks can be
assembled to create custom multi-task models.

3) Adapters: With the aim of learning universal represen-
tations that can perform well across multiple domains, Rebuffi
et al. [97] introduce residual adapter modules. Adapters are
small neural networks that learn to recognise task-specific
parameters given a model pre-trained on another task. Inspired
by the ResNet [98] architecture where residual connections are
introduced across the sequential process of a CNN, adapters
are modules attached after each convolutional block that learn
to select parameters to be utilised for a downstream task.
This presents an alternative to traditional fine-tuning as only
the adapters are trained. Rebuffi et al. [97] demonstrate the
capacity of adapter modules to maintain performance across
10 domains by just tuning a small portion of domain-specific
parameters, and also their capacity to overcome the challenge
of learning without forgetting [99].

Rebuffi et al. [100] introduce parallel adapters as a simpler
variant and show that only a few parameters need to be re-
trained. As opposed to domain learning, Maninis et al. [101]
show how adapters can be used in Incremental Multi-Task
Learning (I-MTL). As a new task is optimised, Maninis et al.
[101] train task-specific adapters to identify what parameters
to retrain and Squeeze-and-Excitation [102] modulation blocks
perform channel-wise attention. Furthermore, to address the
challenges raised by I-MTL, AdapterFusion [103], inspired by
the multi-task objective adapter training strategy proposed by
[104], introduces a 2-stage algorithm that enables task-specific
parameters inside a transformer model to re-use other task-
specific parameters contained in adapters. It is worth noting
that, apart from the few aforementioned studies, adaptors have
been studied far less in CV than in NLP. There is thus scope
for exploiting this efficient parameter-sharing more fully in
CV applications

D. Neural Architecture Search

Neural Architecture Search (NAS) generally attempts to
find the best network architecture given a specific problem
by manipulating neural modules. However, in case of a multi-
task objective, NAS can be seen as a way to partition the
parameter space. For instance, Meyerson and Miikkulainen
[105] introduce parameter sharing through soft ordering (as
opposed to parallel ordering). The idea is to learn individual
weight scalars per shared layers to soft-merge parameters at
different depths of a network. This comes down to learning a
N-dimension tensor of task-specific parameters. Alternatively,
Multi-gate Mixture of Experts (MMoE) [106] embeds the
Mixture of Experts (MoE) framework [107] in MTL by sharing
expert task-specific networks and optimising a gating network
to select what features to use for each task. Following the
same framework, Hazimeh et al. [108] further improve the
efficiency and stability of the selection of experts process and
demonstrates its significant improvement on large-scale multi-
task datasets.

With the aim of learning an even more flexible assembling
strategy, evolutionary algorithms have been proposed as
a training strategy in which agents are network inference
routes consisting of a set of computational blocks [109, 110].
Similarly, to learn large-scale MTL systems that tackle
catastrophic forgetting in the I-MTL paradigm, Gesmundo and
Dean [111] adopt an evolutionary algorithm to dynamically
optimise a model each time a new task is added. Moreover,
motivated by even more flexible ways to share features, some
work has investigated using computational operations inherent
to CNN layers as modulation units. For instance, Maziarz
et al. [112] introduce the Gumbel-SoftMax Matrix model
by modulating inner components of a layer, and shows how
their activation is learned to optimise tasks through logits.
Alternatively, Sun et al. [113] show how routing policies can
be learned through the Gumbel-Softmax sampling method
[114] taking into account computational resources. Recently,
Zhang et al. [115] use this trick to integrate the learning
of such policies into its programming framework. Bragman
et al. [116] modulate networks the same way as [114],
however stochastic filter groups are introduced as a way
to model the distributions, approximated via variational
inference [117], over the possible kernel groupings. More
recently, Adashare [113] introduced MTL in such architecture
search-based systems to model relationships between tasks
by studying the partitioned feature space. As a result, recent
studies have focused on leveraging these relationships to
route information through networks. For instance, Lu et al.
[118] incrementally expand on an initially small network,
at each step, grouping similar tasks based on a measure of
task affinity. Similarly, Vandenhende et al. [119] implement
a low-resource, layer-wise sharing strategy driven by NAS,
exploiting task affinity measures. In a CV context, Vu et al.
[120] leverage hardware-aware NAS [121] together with
MTL to improve the accuracy of dense-prediction tasks on
edge devices.

III. OPTIMISATION CHALLENGES

MTL has underlying optimisation challenges due to it being
a Multi-Objective problem. MTL is subject to two major
optimization issues. First, overall performance is dependent
on the relatedness of the tasks being optimised. Unrelated
tasks can have conflicting gradients that will lead to a non-
convergence of a multi-task solution. This phenomenon is
called negative transfer. Second, multi-objective performance
relies on a thorough task balancing problem as respective
complexities interfere during training. For example, easier
tasks converge faster, resulting in larger gradients being back-
propagated across all tasks. This makes the acquisition of
aggregated representations for different task gradients non-
trivial. This section reviews solutions aiming to tackle the
aforementioned challenges. First, Section III-A reviews how
individual losses can be adjusted to balance tasks in a MTL
training. Second, Section III-B focuses on techniques that
directly operate over gradient updates during training. Third,
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Section III-C reviews techniques directly inspired from Multi-
Objective Optimisation to perform gradient-descent under a
MTL configuration. Last, Section III-D introduces other task
balancing approaches.

A. Loss-based Techniques

Early work in deep MTL studied a weighted average of the
task-specific losses Li. By considering T tasks, this multi-task
loss can be formulated as follows:

LMTL =

T∑
i=1

wiLi, (8)

where wi are respective positive task weights.
Rather than setting weights manually, solutions have been

proposed to incorporate the weights into the objective func-
tion to adaptively weigh tasks during training. For example,
AdaLoss [122] suggests adaptively tweaking weights in such
a way that they are inversely proportional to the average
of each loss in order to project losses onto the same scale.
Alternatively, [68] introduces learnable scalar parameters into
the minimisation objective. The authors derive their loss
weighting strategy based on the Homoscedastic (or task-
dependent) uncertainty which captures the uncertainty of a
model, this type of uncertainty is invariant to different inputs.
The authors follow a Gaussian likelihood maximisation setting
and show that the loss optimisation given two tasks can be
approximated as:

Luncert(W,σ1, σ2) =
1

2σ2
1

L1 +
1

2σ2
2

L2 + log σ1σ2. (9)

Following the same strategy, Liebel and Körner [123] suggest
a slight difference in the log regularisation term, by changing
it to log(1 + σ2). This is to prevent values of σ ∈ [0, 1]
yielding negative loss values. We refer to this method as re-
vised uncertainty. However, uncertainty-based task balancing
strategies have certain drawbacks and in practice, task-wise
terms need to be changed in Eq. (9) depending on the type of
task (classification or regression) and depending on the task-
specific loss. As a result, IMTL [124] introduces a hybrid
method using both gradient methods and adaptive loss tuning.
The loss component IMTL-L updates task-specific parameters
and learns task-wise scaling parameters s by minimising a
function g for each task as:

g(s) = esL(θ)− s. (10)

Eq. (10) shows that each task loss is scaled by es and
regularised by s to avoid trivial solutions. In practice, this tech-
nique allows tasks to all have comparable scales. Moreover, as
opposed to uncertainty weighting [68], IMTL-L does not bias
towards any type of task such as regression or classification.
Alternatively, Chennupati et al. [125] introduce a Geometric
Loss Strategy (GLS), using the geometric loss to weigh n
task-specific losses L1...n. The geometric loss is invariant to
individual loss scales which makes it an easy way to balance
tasks. As a result, Chennupati et al. [125] decide to weight
respective tasks as follows:

Lgeometric = Πni=1
n
√

Li. (11)

Additionally, the authors introduce a variant to focus on m
(m < n) ‘more important’ tasks and therefore attribute more
weighting to these as demonstrated below:

L̃geometric = Πmj=1
m

√
L′
j ×Πni=1

n
√

L′′
i . (12)

Alternatively, balance of tasks can be achieved through
averaging task weights over time by considering the rate of
change in the respective task-specific loss. Liu et al. [126]
introduce Dynamic Weight Average (DWA). DWA calculates
a specific task-specific weight λk for a task k by obtaining a
relative descending rate compared to other tasks with respect
to the previous iteration (averaged over multiple epochs) as
follows:

λk(t) =
Kexp(wk(t− 1)/T )∑
i exp(wi(t− 1)/T )

, wk(t− 1) =
Lk(t− 1)

Lk(t− 2)
,

(13)
where T is a temperature parameter controlling the stiffness of
the weighting distribution and K ensures that

∑
i λi(t) = K.

More recently, Random Loss Weighting (RLW) [127] has
drawn task-specific weights from a probability distribution at
each epoch before normalising them and shows comparable
results to state-of-the-art (SOTA) loss-weighting strategies. As
a result, Lin et al. [127] provide a more generalisable solution
than the baseline (Eq. (8)), due to its additional randomness.
Finally, [51] provides benchmark results comparing Single
Task Learning (STL) to DWA [126], uncertainty [68] and
revised uncertainty [123] and suggests that, given careful
task selection, the revised uncertainty method [123] generally
performs best but suffers when there is lack of training
samples.

B. Gradient-based Techniques
Weighting losses is an indirect way of changing the model’s

gradients. Therefore, a line of work has investigated how to
optimise MTL models by directly operating over the gradi-
ents. Throughout this section, we refer to the illustration in
Fig. 5 which provides a visualisation of the gradient update
techniques introduced by the presented methods. Informally,
the problem is that during multi-task optimisation, a subset
of parameters θ is shared across multiple tasks, as a result,
θ generally receives gradient updates to optimise all tasks at
once. In practice, this is achieved by finding an aggregated
representation of the vectors. However, finding such represen-
tation is not trivial as task-respective gradients might conflict.
Hence, GradNorm [128] proposes a method that balances
training by automatically tuning the gradient magnitudes.
Considering a subspace of weights of a model W (generally
chosen as the last shared layer for computational purposes),
GradNorm [128] defines the L2 norm of the gradient for a
particular weighted task loss i, and similarly defines GW (t) the
average gradient norm across all tasks at time t. Additionally,
GradNorm [128] defines 2 training rates. The first training rate
is task-specific and is defined as L̃i(t) = Li(t)/L(0). It is the
loss ratio for a task i at time t. The second training rate defines
a relative training rate for a task i as follows:

ri(t) = L̃i(t)/

n∑
i=1

L̃i(t), (14)
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(a) GradNorm
[127]

(b) MGDA
[136]

(c) PCGrad
[131]

(d) IMTL-G
[124]

(e) CAGrad
[138]

(f) Nash-MTL
[145]

Fig. 5. Visualisation of the different gradient update methods in MTL. The blue arrows represent the projections of the task-specific gradient update noted
as g1, g2 and g3. The red arrow represents the aggregated gradient update.

where the right term is an averaged training rate over all tasks
n for the given time t.

Subsequently, GradNorm [128] calculates new task-specific
gradients for the weight subspace W based on the update rule
below:

Gi
W (t) = GW (t)× [ri(t)]

α, (15)

where α is a hyper-parameter controlling the force of traction
towards a similar training rate for all tasks. This method, by
directly operating over gradients during training, adaptively
tunes the speed to which tasks are being trained. However,
solely balancing tasks does not prevent conflicting gradients
(negative transfer).

GradDrop [129] proposes adding a modular layer that
operates during back-propagation to first select a sign (positive
or negative) based on the initial distribution of gradient values.
It then proposes masking out all gradient values of the opposite
sign. Similarly, Du et al. [130] leverage auxiliary tasks in
order to optimise a main task. During training, Du et al. [130]
only minimise the auxiliary losses if their gradient update
at epoch t is non-conflicting with the main task gradient
update. Specifically, Du et al. [130] use the cosine similarity
to measure the gradients relation. Conceptually, if the cosine
similarity between the main and auxiliary gradients is posi-
tive, it suggests that the auxiliary loss should be minimised
alongside the main loss, otherwise, it should not. Suteu and
Guo [131] use a similar strategy in a more conventional MTL
setting, in which multiple tasks are optimised simultaneously.
Suteu and Guo [131] use the cosine similarity to ensure shared
gradients are near orthogonal. The authors refer to conflicting
gradients when these have a negative cosine similarity, and
non-conflicting when it is positive. Unlike [131] which ensures
‘near orthogonal’ properties of the gradients via the minimi-
sation of the loss, PCGrad [132] projects only conflicting
gradients by projecting those of task i onto the normal plane
of task j as shown in Fig. 6 (b). Formally, such projection can

be defined as:
∆gi = gi −

gi · gj
∥gj∥2

gj . (16)

However, imposing such strong orthogonality constraint upon
gradients implies that all tasks at hand should benefit from
similar gradient interactions, ignoring complex relationships
and destructing natural optimisation behaviour. Moreover,
PCGrad [132] stays idle when the gradients have positive
cosine similarity, which still might not be optimal as a more
desirable similarity (closer a positive cosine similarity) might
be preferred. Hence, GradVac [133] leverages both directions
and magnitudes in an adaptive strategy. Specifically, given two
tasks i and j, a similarity goal ϕTi,j is fixed between two
gradients gi and gj such that ϕTi,j > ϕi,j for which ϕi,j is the
cosine similarity, as computed in PCGrad [132]. To achieve
this, GradVac [133] derives the projection equation (Eq. (16)
by fixing the gradient of gi and rather estimates the weight of
gj via the Law of Sines in the gradients plane. This process
can be summarised as:

∆gi = gi+
∥gi∥(ϕij

√
1− ϕ2

ij − ϕij

√
1− (ϕTij)

2)

∥gj∥
√
1− (ϕTij)

2
· gj . (17)

Furthermore, using an Exponential Moving Average (EMA)
(similar to DWA [126]), ϕTij is estimated in an adaptive
manner during training, over a subset of shared parameters
w belonging to the same layer as:

∆ϕijw = (1− β)ϕtijw + βϕt−1
ijw . (18)

Similarly, Liu et al. [124] suggest a hybrid method leverag-
ing both loss and gradient tweaking, IMTL [124] chooses, in
their gradient component IMTL-G, to make all the projections
from each task equal to balance the tasks. Recently, Ro-
toGrad [134] proposed a solution to both homogenise gradients
magnitude and resolve conflicting ones. To achieve this, a
2-step algorithm is implemented. The first step consists in
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(a) (b)

Fig. 6. Conflicting vectors (with negative cosine similarity), where v⃗i and
v⃗j represent task-specific updates. In case (a) PCgrad [132] projects v⃗j onto
the normal space of v⃗i resulting in ∆v⃗j . In case (b), PCgrad [132] oppositely
projects v⃗i onto the normal space of v⃗j . The resulting projections are later
added to update the model parameters.

homogenising the gradients such that the tasks that have pro-
gressed the least are encouraged to learn more. Therefore, to
project the gradients Gk, for a task k, Rotograd [134] assigns
weights to gradients such that their weighted combination is
C =

∑
k αk∥Gk∥. Precisely, α is adaptively calculated every

ith iteration as:

αk =
∥Gk∥/∥G0

k∥∑
i∥Gi∥/∥G0

i ∥
. (19)

In the second step, Rotograd [134] tunes the gradients by
learning a task-specific rotation matrix Rk on the last shared
representation z. Hence, Rk aims to maximise the cosine
similarity between the gradients across tasks given a batch
of size n; or equivalently, to minimise the loss function. This
process can be illustrated as:

Lkrot = −
∑〈

RTk gn,k, vk
〉
. (20)

C. Multi-Objective Optimisation

Multi-Objective Optimisation (MOO) addresses the chal-
lenge of optimising a set of possibly conflicting objectives.
This section reviews gradient-based multi-objective optimisa-
tion methods applied to MTL. First, Section III-C1 formally
defines Pareto optimisation and how it is relevant to MTL un-
der gradient descent techniques. Then, Section III-C2 reviews
gradient-descent optimisation solutions applied to MTL.

1) Pareto Optimality: As presented in Section III-A, tuning
the task-specific weights is not trivial and usually comes at the
cost of computational overhead. One way to remedy this is to
reframe the MTL optimisation into a MOO problem. Motiva-
tion to use MOO for MTL comes from the fact that global
optimality for multiple tasks is unconceivable unless a pair-
wise equivalence between tasks exists, which is unrealistic.
For a hard-parameter sharing network as depicted in Fig. 3
(top), θsh represents parameters that are shared across all
tasks and θt, t ∈ T , are task-specific parameters. Additionally,
L̂t(θsh, θt) is the empirical loss for a specific task t ∈ T . Then,
a multi-objective loss function can be defined as:

min
θ1,...,θT

(L̂1(θsh, θ1), ..., L̂T (θsh, θT )). (21)

Minimising Eq. (21) leads to Pareto-optimal solutions. In other
words, in a MTL setting, considering both shared and task-
specific parameters θsh,ti and θsh,tj for task i and j respectively,

a Pareto-optimal solution is one for which a change in θsh,ti

would damage the performance of task j and vice-versa. The
set of Pareto-optimal solutions can therefore be considered as
a set of trade-offs between tasks [136]. This set is called the
Pareto front (Pθ).

Pareto optimality has extensively been studied leveraging
the Multiple Gradient Descent Algorithm (MGDA) [137]
which supports the Karush-Khun-Tucker (KKT) conditions
that are necessary conditions for Pareto optimality. MGDA
[137] demonstrates that minimising Eq. (22) supports the KKT
constraints and states that the result of this minimisation is
either 0 and therefore results in a multi-task solution which
satisfies the KKT conditions (a point along the pareto front);
otherwise, this minimisation leads to a descent direction that
improves all tasks. This process can be depicted as:

min
α1,...,αT


∥∥∥∥∥
T∑
t=1

αt∇θshL̂
t(θsh, θt)

∥∥∥∥∥
2

2

 , (22)

where αt are non-negative scaling factors such that:
∑T
t αt =

1.
2) Gradient Descent Solutions: In a MTL context, Sener

and Koltun [138] show that MTL optimisation can be regarded
as a MOO problem using MGDA and demonstrates that
solving Eq. (21) is equivalent to finding the min-norm point
in the convex hull formed by the input points. That is, finding
the closest point in a convex hull to a query point. As a result,
Sener and Koltun [138] obtain the aggregated projection of the
task-specific gradient vector updates. Subsequently, to solve
Eq. (21), Sener and Koltun [138] use the Frank-Wolfe solver
[139] and ensures, with negligible additional training time,
the convergence to a Pareto-optimal solution. CAGrad [140]
generalises the MGDA algorithm and chooses to ensure the
convergence of the MTL objective to the equally weighted av-
erage of task-respective losses. To achieve this, CAGrad [140]
first obtains an average vector d of individual task updates gi.
Then, it aims to find an update vector gtw on a pre-defined
ball around d, which maximises the worst local improvement
between T tasks defined as: maxd∈R mini∈T ⟨gi, d⟩. This way,
CAGrad [140] balances the different task-specific objectives.
Furthermore, the authors show the dominance of CAGrad in a
semi-supervised setting compared to MGDA [138]. However,
this approach ensures the convergence to any point along the
Pareto front which might not be representative of the desired
task balance, an unbalanced solution might be preferred to
enhance a target task. Therefore, Pareto MTL [141] proposes
generalising MGDA to generate a set of multiple Pareto
optimal solutions along the Pareto front which would serve
as different trade-offs to choose from. To achieve this, Lin
et al. [141] take inspiration from [142] and decomposes the
objective space into K well-distributed unit preference vectors
uk to guide solutions. Formally, this is achieved through a
sub-problem to Eq. (21) where a dot-product maximisation
constraint is imposed between uk and a given vector v to
guide the learning onto a targeted area of the Pareto front. A
sub-region is defined as:

Ωk = {v ∈ Rm+ |uTk v ≤ uTk v,∀j = 1, ...,K}. (23)
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HYPERNET

Preference Vector MTL parameters

HPS MTL

Input

Fig. 7. Controllable Pareto MTL [135] approximates the Pareto and allows for real-time trade-off optimisation. A preference vector is sampled using
Monte-Carlo methods. This vector is given as input to a Hypernet which outputs the parameters of Hard-Parameter Sharing (HPS) model. The returned Pareto
optimal solution is the closest to the preference vector.

In contrast to its predecessors, Ma et al. [143] suggest gen-
erating continuous Pareto optimal solutions along the Pareto
front. To achieve this, Ma et al. [143] propose a 2-stage
training algorithm that, in its first stage, generates a single
Pareto stationary point x0 from a network’s initialisation.
Then, a set of points xn is explored along the tangent plane
direction vi and the points are calculated as: xi = x0 + svi
where s is a step size. As a result, a set of directions is
obtained. Finally, Ma et al. [143] combine the tangent vectors
acquired in the previous step through linear combination to
form convex hulls in which Pareto solutions are obtained,
resulting in a continuous approximation of a larger Pareto
front.

All the solutions introduced thus far in this section initialise
network parameters per trade-off, resulting in a large storage
demand and making solutions computationally inefficient.
Additionally, the generated solutions are either singular [138]
or subject to the practitioner’s preferences [141, 143]. To
alleviate both issues, Lin et al. [135] propose utilising a
HyperNet [144], a type of neural network that learns to
generate the weights of another network, rendering storage less
demanding. Additionally, Lin et al. [135] introduce preference-
based training to perform trade-off selection in real-time. More
specifically, the objective space is sampled into K subspaces
(similarly to [143]). Specifically, given a preference vector p,
the goal is to find a local Pareto optimal solution within such
subspace for which the angle is the smallest to p. To train
the network on representative trade-off preference vectors,
vectors are sampled using Monte Carlo methods and are given
as input to the HyperNetwork G. Lin et al. [135] use a
standard hard-parameter sharing strategy and such a process
is depicted in Fig. 7. Similarly, along the lines of preference-
driven Pareto optimal solution, Momma et al. [145] choose to
directly cast the MOO optimisation as a Weighted Chebyshev
(WC) problem which consists of finding the Pareto front by
minimising the l+∞-norm between the initialisation point and
the Pareto front.

Recently, Nash-MTL [146] suggests a different approach
to obtain an Pareto optimal solution. Inspired by the game
theory literature, the authors directly aim at obtaining the Nash
Bargaining Solution [147] which can be found on the Pareto
front and translates to a proportionally fair solution where
any change to the state results in a negative update for at
least one task. Specifically, let’s consider U ∈ RT the set
of all possible trade-offs and similarly, D ∈ RT the default

set of disagreements, namely, a trade-off if all tasks T fail
to agree on an agreement. Moreover, in order to find a task
agreement, namely, find a solution for U with columns ui such
that ∀i : ui > di, the authors demonstrate that finding a Nash
Bargaining Solution is equivalent to solving:

u∗ = argmax
u∈U

T∑
i=1

log(ui − di)

s.t.∀i : ui > di

(24)

Subsequently, the authors propose an iterative solution to solve
Eq. (24) and find the aggregated update vector is equivalent
to solving Algorithm 1

Algorithm 1: Nash-MTL
Input: θ0, an initial parameter vector; η, learning rate
for t= 1,...,T do

Computer task-specific gradients: gt

Let Gt be a matrix with columns gt

Solve for α: (Gt)TGtα = 1/α, to obtain αt

Update parameters: θt = θt − ηGtαt

end
return θT

where G ∈ Rm×T is a multi-task gradient matrix with
parameter dimension m. Moreover, α ∈ RT+ is a strictly
positive matrix which acts as a constraint to the objective
which conceptually renders gradient vectors in G orthogonal
when they need to be. Additionally, t is a task iterator,
θ represents the shared parameter networks, η the learning
rate. Gt is a task-specific vector update matrix with columns
gti , i ∈ T . The results obtained by [146] suggest Nash-MTL
achieves current state of the art weighting strategy under many
MTL configurations.

However, recently, Xin et al. [148] instead demonstrated that
most MTL optimisation strategies [138, 128, 132, 129] do not
improve MTL training beyond what careful choice of scalar
weights in MTL weighted average (Eq. (8) can achieve. Rather,
Xin et al. [148] identify MTL optimisation is particularly
sensitive to the choice of hyper-parameters.

D. Other Task Balancing Techniques

1) Stopping Criterion Techniques: Previous techniques bal-
anced tasks either by finding a combination of the task weights
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or through gradient manipulation to prevent destructive learn-
ing. However, these techniques globally penalise some tasks
over others by constraining certain parameters in the objective
space. Therefore, Zhang et al. [149], as part of their solution
leveraging multiple auxiliary tasks to perform facial landmark
detection, propose a task-wise early stopping strategy. The
intuition is that once a task starts to overfit a dataset, it will
harm the main task as it will force the optimisation to be
stuck in a non-global optimum. Hence, a task is stopped if
its performance, measured as the product between the training
error tendency, noted as Ltr and the generalisation error w.r.t
Ltr, noted as Lval, has not exceeded a certain threshold ϵ.
Formally, a training error rate Etr is calculated over a patience
epoch length k w.r.t a current epoch t. Intuitively, the smaller
Etr, the greater the signal to continue the training for the task
as the training loss substantially drops over the period of time
k as:

Etr =
k ·medtj=t−kLtr(j)∑t

j=t−k Ltr(j)− k ·medtj=t−kLtr(j)
, (25)

where med represents the median operation. Similarly,
Eval measures the overfitting w.r.t Ltr. Zhang et al. [149]
define λ as an additional learnable parameter to measure
the importance of the task’s loss. This process is shown in
Eq. (26) below:

Eval =
Lval(t)−minj=1..t Ltr(j)

λ ·minj=1..t Ltr(j)
. (26)

Overall, if Etr · Eval > ϵ, the stopping criterion is met.
In a MTL configuration in which all the tasks are aimed

to be optimised equally, stopping a task might result in
catastrophic forgetting. Therefore, Lu et al. [150] propose
a simple dynamic Stop-and-Go procedure that continually
checks for task-wise improvement and degradation during
training. Precisely, if performance, measured as the task-wise
validation loss term for a given epoch n, noted as Lnt , has
not met the performance threshold ϵstop over the patience
parameter k such that Ln→k

t < ϵstop. Then, task t is set to
STOP mode. If during STOP mode, Lnt is degraded and meets
the degradation threshold ϵgo such that Lnt < ϵgo, then task t
is set back within the MTL training and is set to GO mode.
In [150], the authors set ϵstop to be 0.1% and ϵgo to be a
degradation of 0.5% of the task’s best performance.

2) Prioritisation Techniques: An alternative to balancing
the learning of multiple tasks simultaneously is to instead
focus on easier or complex tasks to benefit the training for
all tasks. For example, Li et al. [151] choose to guide their
MTL training by gradually incorporating both harder tasks and
harder instances into the objective function. By considering a
number of tasks T and a number of instances per task n, the
authors propose a regularisation f over W ∈ Rn×T as shown
below:

f(W,λ, γ) = −λ

T∑
i=1

∥W∥1 + γ

T∑
i=1

∥W∥2√
ni

, (27)

in which the first term imposes the negative L1-norm on the
instances n. This term prioritise easier instances over harder

ones when λ is low. This is motivated by the fact that easy
instances, for which the empirical loss will be small, have
bigger gradients. This behaviour is caused by the sparsity
norm defined above. On the contrary, difficult instances have
bigger empirical losses and therefore smaller gradients. As
a result, as training continues, gradually increasing λ will
introduce more difficult instances by increasing the difficult
task gradients. Similarly, the second term imposes the L2−1-
norm on the task-specific data instances ni. This is motivated
by the fact that harder tasks exhibit larger empirical losses and
gradually reducing γ will introduce harder tasks. This enables
the training to smoothly progress whilst avoiding both inter-
instance and inter-task possible conflicts.

On the other hand, some works have focused on starting
with harder tasks to benefit easier tasks. For instance, Guo
et al. [152] propose a loss weighting strategy leveraging the
focal loss [153] as defined below:

FL(p, γ) = −(1− p)γ log(p). (28)

The focal loss, described in Eq. (28) is primarily intended for
classification, Guo et al. [152] suggest using key performance
metrics (KPIs) per task t (i.e. accuracy, average precision etc...)
to generalise the method. Specifically, they adjust these task-
specific KPIs κt in an EMA approach as shown below:

κ̄
(τ)
t = ακ

(τ)
t + (1− α)κ

(τ−1)
t , (29)

where α is a discount factor and τ is the iteration. Subse-
quently, the authors swaps original focal loss probability p
(described in Eq. (28)) for their KIPs κ̄

(τ)
t . As a result, the

authors define a task difficulty as a combination of the task-
specific loss and its respective KPI-based focal loss as:

LDTP =

T∑
t=1

FL(κ̄t; γt)L̂t. (30)

Alternatively, Sharma et al. [154] propose prioritising harder
tasks through active sampling (i.e., choosing what data to train
a model with at a particular time t during training). More
specifically, the model keeps track of two performance esti-
mations: ti and ci which are a target performance and current
performance, respectively, for a task i. The task performance
is measured as follows: mi =

ti−ci
ti

, where a higher value of
mi indicates the model is currently bad at task i. Therefore,
to encourage the model to prioritise harder tasks, a task-wise
sampling strategy is modeled by a distribution pi at every k
decision steps which is calculated as follows:

pi =
exp

mi
τ∑k

c=1 exp
mc
τ

. (31)

Subsequently, the probability distribution is used to sample the
next tasks throughout training.

IV. TASK GROUPING

As explained in Section III, the overall performance of
a MTL model heavily depends on the set of tasks. The
optimisation space could be simplified by only processing
related tasks together. This chapter focuses on how Task
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Fig. 8. Taskonomy [52] leverages pre-trained encoder(s) (in green) and
estimates a mapping (in red) from the latent representation to the input of the
target task’s decoder (in purple).

Relationship Learning (TRL) can be achieved through Task
Grouping (TG).

Thus far, most works relied on human judgment concerning
the relatedness of the tasks. However, these assumptions can
be mitigated by quantitatively measuring task relationships.
Early attempts in this area aimed to model task relationships
(TR) based on vectors in a shared low-dimensional subspace.
For example, Kang et al. [155] explicitly build upon MTFL
[54] (introduced in Section II-A) and frames the task grouping
problem as a mixed integer programming problem. GO-MTL
[60] learns a linear combination of task-specific vectors.
Later, Long et al. [156] expand on previous works modelling
TRs using matrix-variate normal distribution over task-specific
parameters regularisation techniques to identify positive task
correlations [157]. However, to embed this regularisation
technique into DL, Long et al. [156] use the tensor normal
distribution [158] as a prior over task-specific tensors and
learns task relationships by learning task covariance matrices.
Similarly, Ma et al. [106] learn gating networks in a MoE
framework to implicitly model task interactions. However,
these works model relationships from a high-level perspective
and generally poorly describe pair-wise relatedness. To tackle
TG, a body of work focused on studying relationship based on
Transfer Task Learning (TTL) by directly learning a mapping
between the learned parameters for a task a to a target task
b in a MTL setting. For instance, Taskonomy [52] introduced
a computational approach to perform TG based on finding
transfer learning dependencies between tasks. More specifi-
cally, Zamir et al. [52], after training task-specific networks,
the encoder parts of the networks are frozen and transfer task
functions and dependencies are estimated via a target task
decoder. Motivated by the idea that multiple source tasks can
help provide a more meaningful dependency estimation for
a mutual source task, the authors include high-order transfers
where a mapping function receives the five best representation
as inputs (from the five best first-order source tasks mappings),
as illustrated in Fig. 8. Additionally, Taskonomy [52] derives a
vision task clustering architecture and shows that 4 major clus-
ters stand out, namely: 3D tasks, 2D tasks, low dimensional
geometric tasks and semantic tasks. Calculating the affinities
in such a way is extremely computationally expensive. To al-
leviate such demand for computation, as opposed to analysing
the performance of TTL, Representation Similarity Analysis
(RSA) [159] directly investigates the feature maps learned by

the task specific networks. The authors choose to leverage
RSA to frame the task relationship problem by computing
correlation through task-specific inferences on pairs of images.
As a result, a dissimilarity matrix is obtained for each task-
specific network and a similarity score is obtained through
the Spearman’s correlation. However, these latter works only
highlight the relationships from a transfer-learning perspec-
tive and do not present performance in a multi-task setting.
Hence, Standley et al. [160] propose an alternative to transfer-
learning based solutions to highlight task relationships. This
alternative is motivated by two findings. First, results obtained
by Standley et al. [160] do not show any correlation in the
performances between measured task affinities and multi-task
learning setting. Second, transfer-learning affinities highlight
high-level semantic dependencies as only the bottleneck of
the source task encoder is used for the mapping. However,
MTL should benefit from clean structural dependencies in
all abstraction levels of the features. Instead, the authors
frame this TG problem as an architecture search. Specifically,
given an input image, the model aims to determine the best
combinations of encoder backbones and task-specific decoders
and perform an exhaustive search over these components. The
process is constrained by a search time budget value given a
number of tasks T . Moreover, Standley et al. [160] optimise
the search space using a branch-and-bound procedure and
trains between

(
T
2

)
+ T and 2T − 1 networks given T tasks

before performing TG. However, this search performance is
computationally expensive and as a result, Fifty et al. [161]
directly build upon this framework and obtains task groups in
a single run only. To achieve this, the authors introduce Task
Affinity Grouping (TAG) which is a look-ahead algorithm that
tracks changes in the MTL loss (in this case, Eq. (8)) under
different task groupings. Therefore, the authors introduce the
notion of task affinity between two tasks a and b defined by
Ẑa→b as:

Ẑt
a→b = 1−

Lb(X
t, θt+1

s|a , θtb)

Lb(Xt, θts, θ
t
b)

, (32)

in which t is the step during the estimation procedure and
where the loss Lb for task b is parameterised by X, θs, θb
which represents the input, the shared parameters and task-
specific parameters for task b, respectively. The look-ahead
term θt+1

s|a represents the update of the shared parameters
w.r.t. the update on task a. Subsequently, a network selection
procedure is implemented to maximise the total inter-task
affinity score. For instance, for a set of tasks {T} the affinity
scores onto a task a are averaged over all the tasks.

Za =

∑|T |
t Ẑt→a

|T |
, a ∈ {T}, t ̸= a. (33)

This problem is NP-Hard and can therefore be solved by a
branch-and-bound algorithm.

V. PARTIALLY SUPERVISED MULTI-TASK LEARNING

Methods reviewed so far have mainly focused on a fully-
supervised setup which assumes that data is sufficient and all
task labels are available. However, this setting is not always
realistic as both acquiring data and task labels is an expensive
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process in certain cases. In practice, the diversity of the task
set is limited as required data and labels generally do not co-
exist within the same datasets and therefore, not in the same
quantities and/or domains. Thus, there is a need to explore
MTL in settings that utilise all available source of information.
Thankfully, MTL systems can mitigate their data dependency
by using available supervisory information of one task to
enhance the training of the unlabelled tasks by leveraging task
relationships. Therefore, in this chapter, Section V-A reviews
how leveraging multiple auxiliary tasks in a self-supervised
manner can help obtain a general representation tailored to
downstream tasks. Then, Section V-B studies MTL solutions
in a semi-supervised settings in which all tasks are optimised.
Finally, Section V-C introduces how MTL can be framed in
a low-data availability learning paradigm: Few-Shot Learning.
Throughout this chapter, we refer to Partial Supervision as an
umbrella term encompassing self-supervised learning, semi-
supervised learning and few-shot learning.

A. Self-Supervised Representation Learning

As seen in this review, finding a task-agnostic representation
suitable for all the tasks is crucial. However, most previous
work in MTL assumed high availability of data and focused
on obtaining such representations without diminishing the
demand for labels. To remedy this issue, an alternative way
to obtain a shared representation is to exploit tasks in a self-
supervised fashion. Self-supervised tasks are tasks for which
labels can be created without manual annotations. Such tasks
hold a strong advantage in the context of MTL as downstream
tasks benefit from the representation induced by multiple tasks
[13]. As a result, Self-supervised Multi Task Learning (Self-
MTL) can be leveraged as a pre-training strategy.

For instance, Doersch and Zisserman [162] suggest leverag-
ing 4 self-supervised vision tasks as a pre-training procedure.
Relative Position [163] is a task which consists of finding the
relative positions of a pair of patches sampled from the same
unlabeled image. Doersch et al. [163] claim to perform well
at this task enhances object recognition. Colorization [164]
which requires predicting the original RGB pixel color values
given a greyscale image. This task acts as a cross-channel
encoder and helps pixel-level dense prediction tasks. The
‘Exemplar’ task [165] where pseudo-classes are estimated for
each sample and the network is trained to discriminate between
these. This task aims to improving classification properties in
the learned representation. Last, Motion Segmentation [166] is
a task that learns, given an image It at a time t to recognise
pixels that will move in It+1. This task helps refine the features
necessary to both object detection and segmentation prediction
through movement cues.

Doersch and Zisserman [162] identify two possible sources
of conflict in a Self-MTL setting. First, there are conflicts
in the task respective inputs, as for instance, the colorization
tasks receive greyscale images whilst others receive RGB
images. This results in an network architectural problem. To
resolve this conflict, the authors suggest performing input
harmonisation by duplicating the greyscale image over the
RGB channels. Second, there is conflict in whether the features

Fig. 9. In [162]’s self-supervised solution, the task-specific heads (in green)
receive a linear combination of high-level features from the last residual layers
of a ResNet-101 [98] encoder. The features are then selected via a matrix A
which is trained to be sparse. This allows for a task-wise factorisation of the
learned features to improve the generalisation of the CNN.

being trained should generalise to the class at hand or to the
specific input image. To resolve this, the authors incorporate
their CNN into a lasso regularisation block where each task-
specific decoder receives a layer-wise linear combination of
the shared backbone convolutional blocks. Hence, a matrix
A ∈ RT×D is trained to be sparse where T is the number of
task-specific decoders and D is the number of convolutional
blocks being shared. This regularisation allows the network
to factorise the features to enhance the generalisation of the
network. The authors present results matching fully-supervised
single-task performance on diverse CV tasks such as classifi-
cation, detection and depth prediction. The authors’ solution
is illustrated in Fig. 9.

MuST [95] uses specialised teacher models to pseudo-
label unlabeled multi-task datasets and suggests a pre-training
strategy based on the following tasks: classification, detection,
segmentation and depth estimation. Subsequently, a multi-task
student model is trained on the pseudo-labeled dataset. Fine-
tuning on downstream tasks shows that the self-supervised pre-
training outperforms traditional ImageNet pre-training base-
line [167] and additionally, the authors identify that a large
number of tasks and datasets benefit the representation for
downstream tasks.

This capacity to leverage MTL to enhance the shared
representation of tasks has motivated applications in diverse
areas. For instance, Cho et al. [169] pre-train a CNN encoder
on stereo-paired images from the well-known road object
detection dataset KITTI [170] to perform monocular road
segmentation. To achieve this, the authors choose to learn
two tasks; Drivable Space Estimation and Surface Normal
Estimation. Given a stereo-pair of images (Ileft, Iright), the
authors obtain a pseudo disparity map Idisparity by using
semi-global matching (SGM) [171]. Subsequently, the authors
run the Stixel World algorithm [172] which, given a RGB im-
age IRGB (Ileft or Iright), exploits the corresponding disparity
map Idisparity|IRGB

to return a semantically segmented rep-
resentation. Maximum a-posteriori (MAP) estimation is then
performed based on the resulting distribution of the predicted
pixel labels to extract the drivable area. Subsequently, surface
normals are obtained by following the method introduced
by [173]. Specifically, given camera-related information such
as the baseline distance D and the focal length Dfocal, the
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Fig. 10. Auxiliary Tasks implemented by [168]. From top to bottom, Multi-object labeling, Closeness labeling, Foreground labeling. Outputs are concatenated
and the resulting representation f is fed as input to a Multi-Layer Perceptron (MLP), along with the initial prediction x for refinement.

previously calculated diversity map Idisparity is converted into
a depth map Idepth. This depth map is later projected onto
3D world space W given D and Inormals and is obtained via
calculating the least-squares plane within W and allocating the
planes to neighbouring set of pixels. The authors fine-tune the
learned features to perform monocular road segmentation and
show impressive results whilst heavily reducing the demand
for data.

Lee et al. [168] utilise Self-MTL as a way to refine
preliminary Object Detection (OD) predictions. In particular,
assuming bounding box labels AOD are only available for
object detection, 3 auxiliary tasks recycle AOD to produce
their own respective labels At. Such a strategy has two main
goals: (1) to learn robust discriminatory features for OD, (2)
to refine the preliminary OD prediction. These auxiliary tasks
are carefully chosen as follows: First, Multi-Object Labelling
randomly produces bounding boxes over the input image,
constrained by the fact that one must overlap with at least one
Ground Truth (GT) bounding box. Then, labels are assigned to
the sampled bounding boxes based on GT Bounding Box area
it overlaps the most with. The intuition behind this task is to
perform augmentation on the input image to enhance global-
isation. Second, Closeness Labeling accounts for the inherent
proximity in object classes in an image. This task consists
in iterating over the GT bounding box annotations to provide
a one-hot encoding based on the proximity of neighbouring
GT bounding boxes. Finally, Foreground labeling encodes the
foreground and background, assigning 1’s to pixels within GT
bounding boxes and 0’s otherwise. These tasks are illustrated
in Fig. 10. Information encoded by these tasks is concatenated
into a representation f and is used to update the original
prediction x via a 1-layer FC layer to obtain a final refined
prediction z such that: z = f ⊕ x.

These methods demonstrate how effectively leveraging mul-
tiple self-supervised objectives can improve a shared represen-
tation suitable for MTL. Such efficiency has motivated some
works to employ Self-MTL for diverse target downstream
tasks in CV. For example, Pfister et al. [174] suggest a mean-

ingful self-supervised pre-training strategy for Image Aesthetic
Assessment (IAA). IAA models, which are usually trained an
aesthetic-labeled ImageNet dataset [167], do not provide much
information for why an image is not aesthetically good, for
example, intrinsic image characteristics (i.e., brightness, blur-
riness, contrast etc). Therefore, the authors train a comparative
network of 2 distorted images, the distortion is chosen as one
of the aforementioned characteristics and the networks aim
at estimating the type of distortion as well as its intensity
in an unsupervised manner. The goal of the MTL system is
to recognise the less distorted image. Moreover, additional
tasks are added to recognise the type and intensity of the
distortion operation applied to the two input images. The
authors report a decrease in 47% in the number of epochs
necessary for convergence compared to a IAA network pre-
trained on Imagenet [167], notwithstanding the reduced need
for data.

Alternatively, self-MTL framework has shown state-of-the-
art results in real-time applications. For example, SSMTL
[175] tackles anomaly detection in videos. Acquiring anoma-
lous labels is difficult and as a result, the authors leverage
self-supervised tasks to train a 3D CNN to recognise anomaly
in videos. SSTML [175] first runs a pre-trained YOLOv3 [10]
to identify objects on a set of object-level frames In. Then, the
authors choose three tasks to identify anomalous objects. First,
irregularity is identified through the arrow of time task, which
involves obtaining an abnormal label by training the 3D CNN
on the video in reverse mode. Second, motion irregularity
detection for which abnormal events are obtained via skipping
frames is used to identify irregular motions such as someone
running, falling etc. Third, a middle box prediction task is
implemented to predict the middle frame. Last, the authors en-
hance their multi-task 3D CNN through knowledge distillation
where the object detector YOLOv3 [10] is trained to predict
the last layer of a ResNet-50 [98], which predicts whether the
middle box frame is abnormal or not. The key point is that,
in the knowledge distillation head, the authors expect a high
difference between the object-level predictions of the 3D CNN



M.FONTANA ET AL. 15

and the ResNet-50 predictions when an anomaly is observed.
The results significantly outperform previous state-of-the-art
methods. Moreover, SSMMTL++ [176] recently reviews this
framework and further improves it through the introduction of
different tasks such as optical flow and advanced architectures
such as the ViT [75].

In addition to using multiple auxiliary tasks to enhance the
learned representation, multiple modalities can be utilised to
provide even more useful sources of information for models
to learn. Multi-modal representation learning can be achieved
by pre-training on diverse datasets. For instance, Lu et al.
[150] obtain a vision-language representation by pre-training
on 12 vision-linguistic datasets and shows impressive results
on common multi-modal tasks such as visual question an-
swering and caption-based image retrieval. The authors utilise
multi-modal self-supervision, inspired by [177], by masking
proportional amounts of both image and word tokens and also
by performing multi-modal alignment, by predicting if two
instances belong together. Similarly, Vasudevan et al. [178]
introduce Multi-Self Supervised Learning tasks (Multi-SSL),
a multi-modal (sound and image) pre-training strategy aiming
to provide a shared representation for both sound and image
modalities that could be used for downstream tasks.

Bachmann et al. [179] leverage the recent the success
of Masked Auto-Encoders (MAEs) [180]. MAEs [180] are
asymmetric encoder-decoder models in which the encoder only
operates on a small portion (about 15 %) of a patch-wise
masked input image and the decoder aims at regenerating
the missing patches. In particular, Bachmann et al. [179]
propose Multi-Task MAE (MultiMAE), a pre-training strategy
reconstructing diverse image modalities. To achieve this, given
a set of RGB images, image modalities are acquired solely via
Pseudo-labeling. First, the depth modality is approximated by
running a pre-trained DPT-Hybrid [181], a ViT-based model.
Similarly, Semantic Segmentation pseudo-labels are obtained
via Mask2Former [182] trained on the COCO dataset [183].
Once these labels are obtained, similar to original MAE [180],
the authors sample a large portion of the image modalities
divided into 16x16 patches. Subsequently, a number of tokens
corresponding to approximately 1

8 of the entire number of
tokens for the 3 modalities (RGB, depth and semantic) are kept
visible. The sampling strategy follows a symmetric Dirichlet
distribution, equivalent to a uniform distribution so that no
modality is prioritised. Then, the authors perform a 2D-sine-
cosine linear embedding on the patches which are fed as
input to the multimodal ViT encoder which operates only
on the visible tokens, tremendously reducing the cost of
computation [180]. For downstream tasks, the multi-modal
self-trained encoder can be used to fine tune a single task
whilst benefiting from geometrical cues induced by other
modalities. This framework is illustrated in Fig. 11.

In addition, Muli-Task Self-Supervised pre-training has
been investigated in medical applications [184, 185, 186], in
music classification [187] or in NLP for multilingual reverse
dictionaries [188].

B. Semi-Supervised Learning Methods
1) Traditional Methods: Liu et al. [19] propose the first
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Fig. 11. [179] leverages three image modalities, obtained via pre-trained
models, as a pre-training strategy. Respective image modalities are patch-wise
masked in a similar way as MAE [180]. Subsequently, linear projection and
positional embedding are applied on patches. Then, patches are given as input
to a shared ViT [75] encoder which processes all the different representations.
Finally, task-specific decoders aim at reconstructing each modality.

semi-supervised MTL framework. The framework consists
of T classifiers whose parameters share a joint probability
distribution based on a soft variant of a Dirichlet Process.
This allows for the parameters to be trained together and for
the predictions to be obtained all at once. The probability
distribution variant retains the inherent clustering property
of Dirichlet Processes and as a result, the authors process
unlabeled data via Parameterized Neighborhood-based Clas-
sification (PNBC). More specifically, the authors perform a
Markov random walk over neighbouring data points obtained
via supervised training, then, classifiers learn to assign unla-
beled data to its closest point. Later, Wang et al. [189] expand
on this setting by framing MTL as a clustering problem. To
achieve this, after training T linear classifiers, the authors
improve their generalisation w.r.t. to their respective data by
imposing a norm over the classification weights. Subsequently,
the algorithm follows the same procedure, frames the respec-
tive classifiers into clusters via K-means clustering and assigns
unlabeled points to nearby classifiers within that space. The
authors also show this framework can be extended to non-
linear classification through the use of kernels. It is worth
noting that these traditional methods had a different notion of
the MTL problem. In fact, the tasks are classification tasks
in which ‘tasks’ are either different datasets [189] or classes,
resulting in multi-class classification [19]. As a result, only one
loss function is used for the optimisation which significantly
differs from the contemporary definition of MTL.

2) Self-Supervised-Semi-Supervised Methods: The methods
introduced in Section V-A highlight how multi-task learning
can be used with self-supervised auxiliary tasks to minimise
the overall training cost and demand for data. This charac-
teristic has motivated numerous works to leverage both semi-
supervised learning and self-supervised learning.

As explained in Section IV, some tasks provide global
understanding of scene geometry (i.e., surface normals, depth
prediction ...) and when trained adequately, translate into low-
level features tailored for dense prediction tasks. Therefore,
there has been effort to investigate these tasks to improve an
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important CV task: Semantic Segmentation (SS). For instance,
[190, 191] use depth prediction as a proxy task for supervised
urban scene understanding tasks such as car detection, road
and semantic segmentation. Similarly, Novosel [192] use both
depth estimation and colorization as a pre-training strategy
for semantic segmentation in autonomous driving. To expand
upon the idea that self-supervised depth estimation (SDE) can
be effective to reduce data dependency, Hoyer et al. [193]
introduce three ways to leverage SDE to improve semantic
segmentation in a semi-supervised learning paradigm.

First, the authors suggest an active learning strategy based
on depth prediction. Specifically, given a set of images of the
same domain G, the authors aim to split it into two image
subsets. On the one hand, GA ⊂ G will be used for pseudo-
labeled annotations for SDE, whilst GU ⊂ G is the set of
unlabelled images. To obtain these, the authors iteratively
choose GA through diversity sampling. Precisely, diversity is
obtained when the chosen images are most representative of
the dataset distribution. In urban scene understanding, this
could result in the most frequent types of buildings, cars,
bicycles, etc being chosen. To achieve diversity, the authors
first populate GA with a random image I from an image set
{I} and iteratively select the farthest L2 distance between two
sets of features of both GA and GU as given a pre-trained
network fSDE :

GAn+1
= argmax

Ii∈GU

min
Ij∈GA

∥fSDE(θ, Ii)−fSDE(θ, Ij)∥2, (34)

where the fSDE outputs the post-inference features based on
the same set of input features θ and the respective annotated
and unlabeled image sets GA and GU .

Subsequently, the authors aim to incorporate another im-
portant aspect to this active sampling: Uncertainty Sampling
which consists in choosing samples that are hard to learn for
the current state of the model: formally, instances in GU for
which the model’s decision is close to the decision boundary.
To achieve this, a student model f ′

SDE(θ, I) is trained on
GA. The authors then measure the disparity, on GU , of both
the predictions of fSDE and those of f ′

SDE . Formally, the
difference is calculated using the L1 distance as:

E(i) = ∥log(1+fSDE(θ, I))− log(1+f ′
SDE(θ, I))∥1. (35)

The authors choose to use the log regulator to avoid close-
range objects dominating the disparity difference. Conceptu-
ally, sampling based on these two characteristics benefits from
diversified, complex and representative instances which results
in a decreased demand for data samples.

Second, inspired by the success of pair-wise data aug-
mentation in CV [194, 195], Hoyer et al. [193] introduce
DepthMix as a way to further reduce this labeling demand.
In this method, considering 2 images Isource and Itarget, the
goal is to learn a binary mask M over Isource. Specifically,
the positive values in M represent regions to be copied
over Itarget. As a result, the augmented image Iaugmented
is obtained as:

Iaugmented = M ⊙ Isource + (1−M)⊙ Itarget, (36)
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Fig. 12. [193] leverages Self-supervised Depth Estimation (SDE) to improve
Semantic Segmentation. The training strategy is composed of two stages. In
stage 1, a camera pose estimation network along with a SDE encoder is trained
on an unlabeled sequence of images. Then, in stage 2, semantic segmentation
is added and is trained on a sequence of images containing a mixture of
labeled and pseudo-labeled images.

where ⊙ is the element-wise product. In contrast to existing
data augmentation methods, Hoyer et al. [193] leverage depth
to avoid violating geometric semantic relationships between
objects. For example, it is undesirable to have a distant object
in Isource to be copied onto the forefront of Itarget, or worse,
to result in geometrically implausible situations like a close-
range motorbike copied on the top of a close-range car. To
mitigate this problem, the authors use depth predictions for
both images noted as Dsource and Dtarget. To achieve this,
given a shared location (x, y), M is constrained to select only
pixels for whose depth values are smaller on Isource than on
Itarget. This process is demonstrated as follows:

M(a, b) =

{
1 if Dsource(a, b) < Dtarget(a, b) + ϵ

0 otherwise
(37)

where ϵ is a small noise value to avoid conflicts of objects
that are the same depth plane on both images such as curb,
road and sky.

The final component introduced in [193] is a semi-
supervised MTL network to perform both Depth Estimation
and Semantic Segmentation. The authors train their MTL
network in 2 stages. The first stage is depth pre-training.
This stage consists in a self-supervised training for both depth
estimation and pose estimation on an unlabeled sequence of
images. As part of this procedure, a shared encoder fEθ is
initialised with ImageNet [167]. Additionally, in order not
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to forget the semantic features during training, the initialised
features, noted as fEI , serve as a regulator for the SDE pre-
training and the authors use the L2-norm in order to guide the
multi-task representation. The resulting loss term is formulated
as:

LSDE = ∥fEθ − fEI ∥2. (38)

In the second stage, the authors introduce semantic seg-
mentation to form a semi-supervised network. In this stage,
the network is trained on depth estimation on both labeled
and pseudo-labeled (using the mean teacher algorithm [196])
instances. Their solution is illustrated in Fig. 12. As a result,
the authors manage to achieve 92% accuracy on a baseline
fully-supervised model whilst using 1/30 of labeled image
segmentation instances. Furthermore, whilst using 1/8 of the
SS labels, it outperforms this supervised baseline by a small
margin. The authors then improve their solution to perform
domain adaptation [197].

Recently, Gao et al. [198] leverage both depth and surface
normals estimation to improve on semantic segmentation. In
addition, the authors show how Nash-MTL [146] can lead to
efficient solutions.

3) Generative Modeling: Recent advances of general self-
supervised methods such as adversarial training with Genera-
tive Adversarial Networks (GANs) [199], as well as the ability
of generative modeling to learn useful visual representations
from unlabeled images [200], have motivated the investigation
of generative modeling in MTL to lower the demand for
labeled data [201, 202].

For example, Imran et al. [16] propose a self-supervised
semi-supervised MTL (S4MTL) solution leveraging adver-
sarial learning and semi-supervision to teach simultaneously
two commonly tackled CV tasks, namely: Image Classification
(for diagnostic classification) and Semantic Segmentation. By
considering two datasets, one labeled DA and one unlabeled
DU , the authors define their respective losses as LA and LU .
If θ and υ define the parameters of network f for semantic
segmentation and diagnostic classification respectively, then
the overall objective can be summarised as:

min
υ,θ

LA(DA, f(υ, θ)) + αLU (DU , f(υ, θ)), (39)

where α is a positive weight for the unsupervised loss.
Subsequently, the authors train two networks: G, a mask
generator for semantic segmentation and D a classifier which
is trained in an adversarial fashion. These two networks are
divided into two branches. For supervised images, G wants D
to maximise the likelihood of the segmentation masks given
a regular image-label pair. For the unsupervised images, the
model performs a transformation t(x) over the input image
x such as rotation to enable G to make predictions. Such a
framework is illustrated in Fig. 13. Using this framework, the
model is claimed to outperform fully-supervised single task
models whilst diminishing the availability of data/label up to
50%.

Wang et al. [18] extend on this framework and introduces
SemiMTL. This method performs urban scene segmentation
and depth estimation. However, the authors leverage multiple
datasets in a heterogeneous (trained on different datasets) MTL
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Fig. 13. In [16]’s solution, a two-branch MTL network shares the same
Generator and Discriminator trained in an adversarial fashion. For the self-
supervised branch, a transformation Tx is applied to the input image.

framework and train their discriminator D in a domain-aware
fashion to compensate for the domain shift inherent to this
environment. To do this, the authors add a inter-domain loss
between the labeled dataset A and unlabeled dataset B for
which the ground-truth value for an arbitrary task t is noted
as yAt and yBt . Moreover, their respective predictions are noted
ŷAt and ŷBt . The authors choose to leverage the cross-entropy
loss and as a result, this inter-domain loss can be expressed,
over the data instances i, as:

Ltinter = −
T∑
i

log(Dt(ŷ
B
t )

(i,yAt )), (40)

where yAt is a 3-dimensional one-hot vector, in which a three-
way classifier is utilized in the discriminator to tell that the in-
put is from the ground-truth from dataset A. Conceptually, the
loss in Eq. (40) aligns the unlabelled task prediction ŷBt onto
the labelled task ground-truth yAt to compensate for domain
shifts. Additionally, the authors introduce different ground-
truth and prediction alignment strategies such as aligning the
unlabelled prediction ŷBt onto the labelled task prediction ŷAt
or aligning ŷBt onto the intersection of the labelled ground-
truth yAt and prediction ŷAt .

4) Discriminative Methods: Discriminative methods aim
at determining boundaries between image representations by
directly comparing them. This section focuses on MTL works
introducing this technique under semi-supervised training
paradigms. One type of discriminative method that has shown
great success in many CV tasks is Contrastive Learning (CL).
CL was originally introduced by [203]. It involves learning a
joint-space in which similar pairs of images are close to each
other and in which different pairs are far part. Momentum
Contrast (MoCo) [204] extends this concept for unsupervised
visual learning and sees this framework as a dictionary look-
up problem where an image I is encoded by a network f , this
is denoted as the query q = f(I). Then, a queue of size n
of image representations Ik, or keys, chosen as the preceding
mini-batch, which are encoded by a momentum encoder fm
are compared kn = fm(Ik). Subsequently, the matching key
k+ is noise-augmented. Finally, f is updated via the InfoNCE
[205] as follows:

LInfoNCE = − log
exp(q · k+/τ)∑N
i=1 exp(q · ki/τ)

. (41)
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Fig. 14. [219] suggests to perform two augmentations of the same image.
Each of the representations are encoded through the CNN encoder f , resulting
in representations z1,2. Whilst one representation (i.e z1) can be processed
by the main task, the InfoNCE [205] loss is minimised between z2 and the
encoded representation p1.

SimCLR [206] suggests a simpler version comparing diverse
augmented versions of the same image, however it requires
larger batch sizes.

Motivated by the aforementioned approaches, MTSS [219]
suggests a simple, yet effective, semi-supervised MTL frame-
work to optimise a discriminative self-supervised auxiliary
task and a supervised main task simultaneously. Specifically,
the authors choose to maximise the similarity between two
different views of the same image. First, two augmentations
on the same image are performed, these views are x1 and x2.
Then, a shared CNN classifier process them leading to two
representations z1 and z2. One, for example z1, is chosen to be
processed by the supervised main task. Similarly to SimCLR
[206], the authors choose to attach a Multi-Layer Perceptron
(MLP) in order to map representations to a similar space, let
us denote the resulting representations as p1 or p2. Finally, the
cosine similarity D between p1 and z2 is calculated as shown
below:

D(p1, z2) = − p1
∥p1∥2

· z2
∥z2∥2

, (42)

to minimise the cosine similarity between the representations
of augmented views. The symmetric auxiliary loss, introduced
by BYOL [220] and depicted in Eq. (43), is used as follows:

Laux =
1

2
D(p1, z2) +

1

2
D(p2, z1). (43)

This auxiliary loss is then added to the overall MTL objective.
The semi-supervised framework is depicted in Fig. 14.

Another recent task discriminatory approach, Cross-Task
Consistency (XTC), is introduced by [221]. Conceptually, this
notion comes from the dependency between two tasks. For
instance, in the context of urban scene semantic segmentation
with depth estimation, there would be inconsistency if depth
estimation evaluated a flat surface where a car is detected.
Therefore, Zamir et al. [221] aim to compute task pair-wise
mapping to map the prediction from a source task to the
label of the target task. However, each of those mapping
functions are parameterised by two Deep Neural Networks
(DNNs) and leverage labels from each task. To mitigate the
use of labeled data, Li et al. [17] leverage cross-task relations
in a semi-supervised framework. Specifically, [17] suggests
a framework to map the prediction of an unlabeled task ŷs

to the ground truth of another task yt through an adaptive
encoder which embeds only shared parameters. Therefore, the
two representations ŷs and yt are mapped on to a joint space
and their cosine distance is minimised.

Li et al. [17] leverage XTC in their framework for se-
mantic segmentation, depth estimation and surface normals
estimation. Let us consider a partially-supervised image I ,
for which only ydepth or ysemantic is available. I is then
processed through a shared backbone network fΘ to which
task-specific decoders hdepthϑ and hsemanticϑ′ are attached. The
obtained predictions are noted as ŷdepth and ŷsemantic. For the
sake of illustration, let us consider ŷsemantic not to be labelled
and therefore to leverage the available ground-truth from the
depth estimation task. Now describing the XTC mechanism,
let us consider a matrix A for which entries correspond to
source → target, (in our example, A[semantic, depth] = 1)
and all other entries are 0. An auxiliary network kθ is used to
conditionally parameterise a mapping network mψ . Similar to
[222], kθ is used to update the layers of mψ . This mechanism
is to allow for a conditional source-to-target mapping. The
two resulting representations are then projected on to the same
joint-space J . The authors use the cosine similarity to min-
imise their distance. Additionally, to avoid trivial mappings,
the features from fΘ are used as a regularisation term of
the distance between the mapping function’s output and the
encoded features fΘ(I). The explained mapping is illustrated
in Fig. 15.

C. Few-Shot Learning Methods

Few-Shot Learning (FSL) is a learning paradigm that aims
to learn unseen classes from a few examples. This train-
ing paradigm is motivated by the fact that humans do not
need hundreds or thousands of exemplar images to learn to
recognise an object. Typically, FSL systems consist of two
stages. First, a general feature extractor is learned from a large
annotated dataset in a stage called meta-training. Second, an
adaption strategy is used to classify the new sample/class (also
known as the query sample) based on a small labeled support
set. This stage is called meta-testing. A similarity function is
then used on the support set to identify the matching class
given the query sample. Traditionally, in FSL-MTL, the goal
is to adapt to unseen classes for a specific task within a MTL
model. In the context of MTL, cross-task interactions within
a multi-task system could help enhance the generalisation to
the few-shot target task. In fact, McCann et al. [223] show
that MTL models generally focus on tasks that have the least
training samples, which is due to the feature sharing process
across tasks.

Recently, the FSL literature has heavily focused on the
initial meta-training stage in which multiple datasets serve
to train a model to obtain global representations for a target
few-shot task, most commonly being image classification. For
example, Simard and Lagrange [224] suggest training such
a model in a MTL fashion by leveraging self-supervised
tasks (similar to solutions introduced in Section V-A), on
both labelled and unlabelled images. The shared encoder is
regularised by the contrastive learning method: BYOL [220].
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TABLE I
SINGLE-TASK VS MULTI-TASK FULLY-SUPERVISED METHODS COMPARISON ON NYUV2

Dataset Method MTL Semseg Depth Normal

mIoU ↑ RMSE ↓ mErr ↓

NYUv2 [207]

Bilinski and Prisacariu [208] ✗ 48.10 - -
Yu et al. [209] ✗ 50.70 - -
InverseForm [210] ✗ 53.10 - -
TADP [211] ✗ - 0.225 -
DepthAnything [212] ✗ - 0.206 -
UniDepth [211] ✗ - 0.201 -
Hickson et al. [213] ✗ - - 19.7
Bae et al. [214] ✗ - - 14.9
iDisc[215] ✗ - - 14.6

Cross-Stitch [13] ✓ 36.34 0.6290 20.88
PAP [71] ✓ 36.72 0.6178 20.82
PSD [216] ✓ 36.69 0.6246 20.87
PAD-Net [70] ✓ 36.61 0.6270 20.85
MTI-Net [72] ✓ 45.97 0.5365 20.27
InvPT [74] ✓ 53.56 0.5183 19.04
TaskPrompter [217] ✓ 55.30 0.5152 18.47
DeMT [218] ✓ 51.50 0.5474 20.02

FilM
layers

M
LP

M
LP

Conditional Mapping

Fig. 15. Considering an input image for which only the depth ground truth is available, [17] performs cross-task consistency and maps the depth ground-
truth to the semantic segmentation prediction to a joint space J through a conditional mapping network (in purple). The cosine distance between the two
representations is minimised.

Subsequently, the MTL system is evaluated on traditional few-
shot image classification.

MTFormer [86] suggests different dense prediction tasks
as few-shot tasks and evaluates a MTL system leveraging
a cross-task attention mechanism at the decoder level of a
ViT [75] on the PASCAL dataset [225]. The authors evaluate
three tasks, in turn, as a few-shot sampled task by randomly
sampling about 1 % of the annotated data for the few-shot task
and keeping all available labels for other tasks. MTFormer
[86] chooses to evaluate Semantic Segmentation, Human Part
Segmentation and Saliency Detection which consists of iden-
tifying interesting points in an image (points that the human
eye would focus on straight away). The results, presented in
Table V, display an impressive improvement over the single-
task FSL baseline. This improvement is explained by two
techniques: the feature propagation across tasks to enhance
the few-shot task representation, and the use of CL in [86],
in which different task representations of the same image are
considered as positive samples, which further reinforces the

shared representation’s quality.

Visual Token Matching (VTM) [226] proposes a continual
few-shot learning framework for dense prediction vision tasks.
In this setting, a universal few-shot learner can learn new dense
prediction tasks given extremely limited labelled task images,
most often only using 10 labelled examples of image-label
pairs. VTM employs a encoder-decoder architecture using ViT
encoders [75] to encode both image and label. As a way to
propagate features across the model hierarchies, the authors
perform token matching using an attention mechanism similar
to MTFormer [86]. More specifically, given a target few-shot
task t, a query image Qt and support set of image-label
pairs of length N ((X,Y )1...Nt ), a task-specific shared encoder
ft is used to process both Qt and Xi

t . On the other hand,
a label encoder g is used to encode Y i

t . Subsequently, the
token matching mechanism based on attention operates on ViT
blocks representations. The block-wise query label predictions
are then concatenated before a classification head provides the
final prediction. Finally, the results reported by [226] suggest
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similar strategies should be elevated to the simultaneous MTL
settings.

TABLE II
FULLY-SUPERVISED MTL METHODS ON PASCAL-CONTEXT

Model Semseg Parsing Saliency
mIoU ↑ mIoU ↑ maxF ↑

Cross-Stitch [13] 63.28 60.21 65.13
PAD-Net [70] 60.12 60.70 67.20
MTI-Net [72] 61.70 60.18 84.78

InvPT [74] 79.03 67.71 84.81
MTFormer [86] 74.15 64.89 67.71

TaskPrompter [217] 80.89 68.89 84.83
DeMT [218] 75.33 63.11 83.42

VI. DATASETS & TOOLS

Section VI-A refers the reader to a list of datasets com-
monly utilised in MTL for computer vision. Additionally,
Section VI-B provides a summary of the results achieved by
partially-supervised MTL solutions. Based on these results,
we discuss and analyse common trends and suggest interest-
ing paths of exploration to further improve MTL. Last, we
introduce a table summarising the different open-source MTL
code.

A. Datasets

Below is a list of common multi-task CV datasets.
1) Taskonomy. [52] This dataset is the largest multi-task

dataset. It contains 4.5 million indoor scene images,
each labeled with 25 annotations. These images in-
clude: scene annotations, camera information, 2D/3D
keypoints, surface normals and various-level object an-
notations. The foundational work [52] on this dataset
performed experiments on 26 diverse tasks.

2) NYUv2-Depth. [207] This dataset comprises 1449 la-
beled images drawn from indoor scene videos for which
each pixel is annotated with a depth value and an object
class. Additionally, there are 407,024 unlabeled images
which contain RGB, depth and accelerometer data, ren-
dering this dataset useful for real-time applications as
well.

3) Cityscapes. [227] This dataset consists of 5000 urban
scenes. Each image is annotated with pixel-level labels
for 30 classes. Additionally, the dataset includes image
stereo pairs associated camera shift metadata. Therefore,
[227] leverages stereo-paired information to produce
accurate depth labels. As a result, Cityscapes [227] is
typically used as a 7-class semantic segmentation class
and depth estimation task.

4) Pascal-Context. [225] A dataset of 1464 of regular
object centered scenes. This dataset includes tasks such
as saliency estimation, depth estimation, human part
segmentation as well as semantic segmentation.

5) KITTI. [170] This dataset is one of the most popular
datasets for Autonomous Driving. The images result
from hours of driving in diverse traffic environments.
This dataset has been utilised for 3-class [228], 10-class

[229] or 11-class [230] semantic segmentation or object
detection. Additionally, the dataset includes 3D labeled
point clouds for 15,000 images.

B. Results and Discussion

This section presents results for partially supervised MTL.
Moreover, an attempt to derive both general performance
guidelines and future areas of investigation is made.

Table I provides a comparison of traditional single-task
methods with a range of recent multi-task learning methods.
The single-task methods covered in this table use RGB-
only processing to provide a fair comparison. This table re-
views three traditionally tackled tasks : semantic segmentation,
monocular depth estimation and surface normal estimation. By
analysing the presented methods on the NYUv2 Dataset [207],
we can observe that semantic segmentation generally improves
by taking advantage of the depth and surface normal features
from depth and surface. However, we can notice that, typically,
MTL methods fail to perform as good as single-task methods
on tasks like depth and surface estimation. We hypothesise that
the reasons being (1) due to task-optimal network architectures
not being the same for all the tasks, leading to a non-
conceivable or overly complex MTL architecture; (2) a task-
specific loss function designed generalising poorly to the MTL
aggregated gradient representation and (3) the trend to design
scalable and simple MTL networks with lightweight decoders
which does not reflect well the difficulty of each task.

Furthermore, we provide, in Table II, a summary of fully-
supervised performant MTL methods on the Pascal-Context
dataset [225] covering commonly tackled tasks : semantic
segmentation, human part parsing (which is semantic segmen-
tation on human body parts) and saliency detection which
consists of identifying interesting points in an image (points
that the human eye would focus on straight away). We identify
that a comparison with STL methods is complex due to the
lack of STL methods covering the same split of the PASCAL
dataset [225]. We however notice a significant improvement
brought by various MTL methods on the semantic segmenta-
tion: where the best STL method achieves 71% mIoU [231], 4
MTL methods significantly outperforms this result in Table II
whilst performing human parsing and saliency detection.

Table III presents results obtained by MTPSL [17] on two
commonly used MTL datasets: NYUv2 [207] and Cityscapes
[227]. The results are reported on three tasks for NYUv2
[207] including semantic segmentation, depth estimation and
surface normals. Additionally, the results are reported on
semantic segmentation and depth estimation for Cityscapes
[227]. First, MTPSL [17] evaluates its cross-task consistency
mapping method under two data availability settings. The first
configuration consists of 1

3 of the images, labelled with the
three tasks, noted as MTPSL (1/3). The results reported in
this setting suggest a degradation in performance compared to
the single task learning (STL) baselines. However, the other
setting, consisting of all images being labelled with only one
of the tasks and noted as MTPSL (one) present better results
closer to the STL baseline for all tasks. Although the two
data settings present the same labeling demand, they showcase
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TABLE III
SEMI-SUPERVISED LEARNING (MTPSL [17]) COMPARISON ON NYUV2 AND CITYSCAPES

Dataset Method Semseg Depth Normal

mIoU ↑ aErr ↓ mErr ↓

NYUv2 [207]

STLSS 37.45 - -
STLDepth - 0.61 -
STLSN - - 25.94
MTLCNN 36.95 0.55 29.5

[17] MTPSL (1/3) 28.43 0.63 33.01
[17] MTPSL (one) 31.00 0.51 28.58

Cityscapes [227]

STLSeg 74.19 -
STLSegNet

Depth - 0.012
MTLCNN 73.36 0.016

[17] MTPSL (one) 74.90 0.016
[17] MTPSL (1:9) 71.89 0.013
[17] MTPSL (9:1) 74.23 0.026

TABLE IV
SEMI-SUPERVISED LEARNING (MTPSL [17]) ON PASCAL-CONTEXT

Dataset Method SemSeg Human Parts Normal Saliency Edge

mIoU ↑ mIoU ↑ mErr ↓ mIoU ↓ odsF ↑

Pascal-Context [225]

STL 47.7 56.2 16.0 61.9 64.0

[17] MTPSL (one) 49.5 55.8 17.0 61.7 65.1

TABLE V
MTFORMER[86] TREATS A TARGET TASK ANNOTATIONS AS FEW-SHOT SAMPLES WHILST KEEPING TWO OTHER TASKS FULLY-SUPERVISED.

RESULTS ARE REPORTED ON THE PASCAL DATASET [225].

Method Few-Shot Task SS ↑ Human Part Seg. ↑ Saliency ↑
mIoU ↑ mIoU ↑ mIoU ↑

STL SS 3.34 63.90 66.71
MTFormer [86] SS 35.26 64.26 67.26

STL Human Part Seg. 71.17 11.27 66.71
MTFormer [86] Human Part Seg. 73.36 51.74 67.74

STL Saliency 71.17 63.90 44.39
MTFormer [86] Saliency 76.00 66.89 55.55

different performance. Therefore, this difference demonstrates
that the joint space mapping is efficient [17] under semi-
supervised settings. Moreover, MTPSL [17] displays, as part
of their evaluation on Cityscapes [227], that some tasks are
worth being shared more than others. The authors introduce
an imbalanced supervision paradigm option and choose to use
only 10% of a task whilst keeping 90% of the other task, noted
as MTPSL (1:9), meaning 10% of input images are annotated
with segmentation ground truth and 90% are labelled with
depth ground truth. The results for imbalanced tasks present
strong robustness, whereas the advantaged tasks outperform
STL baselines.

Similarly, Table IV reviews results obtained by MTPSL
[17] on the Pascal-Context [225] dataset under the ’one’ data
availability setting (where only one task label is available)

for traditionally approached dense prediction tasks. We notice
the major superiority of MTL under this setting : whilst
still performing 5 tasks, [17] manages to outperforms STL
baselines on semantic segmentation and edge detection and
still perform similarly to STL baselines on other tasks.

Table VI shows a range of publicly available code repos-
itories for MTL including paper repositories, programming
framework, benchmarking and partially-supervised code re-
sources.

VII. CONCLUSION

This review provided an extensive and comprehensive anal-
ysis of MTL systems in Computer Vision. Firstly, this work
studied how architectural implications impact parameter shar-
ing across tasks. Second, we analysed the concept of negative
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TABLE VI
MTL OPEN-SOURCE CODE REPOSITORIES

Type Link Description

Paper Repository Awesome Multi-Task Learning 1 This repository regroups MTL-related papers in a chronological order.
Awesome Multi-Task Learning 2 This repository gathers MTL papers and provides a categorisation.

Programming Framework AutoMTL [115] This solution performs automatic MTL model compression given an arbitrary
backbone and a set of tasks.

LibMTL [232] This is a Python library for MTL built on Pytorch. The implementation supports
a large number of SOTA solutions, weighting strategies and data loaders.

Benchmarking
Dense Prediction Tasks [47] This solution benchmarks a 2 MTL solutions on CV dense prediction tasks on

2 datasets. It is implemented in Pytorch.
Taskonomy [52] In addition to providing web-based visualisations. Taskonomy [52] introduces

a API to group 25 vision tasks. Pre-trained models are available in Tensorflow
and Pytorch.

Aligned-MTL A programming repository introducing a new gradient-based optimisation tech-
nique and allowing to benchmark a wide range of different MTL optimisation
strategies introduced in Section III.

Self/Semi-supervision MTPSL [17] This solution implements different cross-task mapping under balanced and
imbalanced semi-supervised settings for dense prediction tasks. This solution
is implemented in Pytorch and supports two datasets.

MultiMAE [179] This solution implements a pre-trained strategy inspired by Masked Auto-
Encoders (MAEs). In addition to visualisations, tutorials are presented. The
solution is implemented in Pytorch.

transfer and introduced MTL methods to remedy this issue
through balancing the pace to which tasks learn during the
training of a MTL system. Third, this paper briefly reviewed
how task relationships can be leveraged to provide new in-
sights to task hierarchies to further improve the performance
of MTL systems. Fourth, we extensively reviewed how MTL
can be utilised under partially supervised settings, for instance,
as a self-supervised pre-training strategy for representation
learning, or by exploiting task relationships to reduce the
demand for labelled tasks in semi-supervised learning or
finally by enhancing few-shot target tasks through cross-task
parameter sharing. Last, we summarised common multi-task
datasets and code repositories to provide the interested reader
with the necessary toolkits. We provide an analysis of results
for partially-supervised MTL techniques. Our key insights for
future work under this paradigm are: (1) MTL generally pro-
cesses a small and constrained set of presumably related tasks.
We identify there is a lack of adaptive methods, capable of
learning relevant features from a large pool of tasks; otherwise,
(2) reported results suggest partially-supervised MTL can be
as performant as its fully-supervised single-task counterparts,
sometimes even better whilst still providing output for multiple
tasks : see Table III, Table IV and Table V (i.e., Few-Shot
Learning, Semi-Supervised Learning). There is therefore a
need to explore solutions and data availability constraints
under a multi-task framework. Finally, (3) we identify that
MTL requires more benchmarking tools on large datasets.
Taskonomy [52] is the first step towards this direction and
similar work could bring new insights to future research in
MTL.
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