Article (Scientific journals)
Smooth and analytic actions of SL(n,R) and SL(n,Z) on closed n-dimensional manifolds
Fisher, David; MELNICK, Karin
2024In Journal of Mathematics of Kyoto University, 64 (4), p. 873-904
Peer reviewed
 

Files


Full Text
slnractions_rev_april23.pdf
Author preprint (411.53 kB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
rigid structures , transformation groups , Zimmer program
Abstract :
[en] The main theorem is a classification of smooth actions of $\SL(n,\BR)$, $n \geq 3$, or connected groups locally isomorphic to it, on closed $n$-manifolds, extending a theorem of Uchida \cite{uchida.slnr.sn}. We also construct new exotic actions of $\SL(n,\BZ)$ on the $n$-torus and connected sums of $n$-tori, and we formulate a conjectural classification of actions of lattices in $\SL(n,\BR)$ on closed $n$-manifolds. We prove some related results about invariant rigid geometric structures for $\SL(n,\BR)$-actions.
Disciplines :
Mathematics
Author, co-author :
Fisher, David;  Department of Mathematics, Rice University, Houston, Texas, USA
MELNICK, Karin  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
External co-authors :
yes
Language :
English
Title :
Smooth and analytic actions of SL(n,R) and SL(n,Z) on closed n-dimensional manifolds
Publication date :
04 August 2024
Journal title :
Journal of Mathematics of Kyoto University
ISSN :
0023-608X
Publisher :
Duke University Press
Volume :
64
Issue :
4
Pages :
873-904
Peer reviewed :
Peer reviewed
Funders :
NSF - National Science Foundation
Funding number :
DMS-2109347; DMS-1906107; DMS-2208430
Available on ORBilu :
since 09 August 2024

Statistics


Number of views
130 (5 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBilu