Artificial intelligence; Cloud computing; Fog computing; Systematic survey; Workflow scheduling; Cloud environments; Cloud-computing; Data processing and analysis; Efficient scheduling; Heterogeneous dynamics; Performance; Scheduling techniques; Systematic Review; Software; Computer Networks and Communications
Résumé :
[en] Fog and cloud computing are emerging paradigms that enable distributed and scalable data processing and analysis. However, these paradigms also pose significant challenges for workflow scheduling and assigning related tasks or jobs to available resources. Resources in fog and cloud environments are heterogeneous, dynamic, and uncertain, requiring efficient scheduling algorithms to optimize costs and latency and to handle faults for better performance. This paper aims to comprehensively survey existing workflow scheduling techniques for fog and cloud environments and their essential challenges. We analyzed 82 related papers published recently in reputable journals. We propose a subjective taxonomy that categorizes the critical difficulties in existing work to achieve this goal. Then, we present a systematic overview of existing workflow scheduling techniques for fog and cloud environments, along with their benefits and drawbacks. We also analyze different workflow scheduling techniques for various criteria, such as performance, costs, reliability, scalability, and security. The outcomes reveal that 25% of the scheduling algorithms use heuristic-based mechanisms, and 75% use different Artificial Intelligence (AI) based and parametric modelling methods. Makespan is the most significant parameter addressed in most articles. This survey article highlights potentials and limitations that can pave the way for further processing or enhancing existing techniques for interested researchers.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KHALEDIAN, Navid ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX
VÖLP, Marcus ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX
Azizi, Sadoon; Department of Computer Engineering and IT, University of Kurdistan, Sanandaj, Iran
Shirvani, Mirsaeid Hosseini; Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
AI-based & heuristic workflow scheduling in cloud and fog computing: a systematic review
G.L. Stavrinides H.D. Karatza A hybrid approach to scheduling real-time IoT workflows in fog and cloud environments Multimed. Tools Appl. 2019 78 24639 24655
M. Nazeri M. Soltanaghaei R. Khorsand A predictive energy-aware scheduling strategy for scientific workflows in fog computing Expert. Syst. Appl. 2024 247 123192
X. Xia H. Qiu X. Xu Y. Zhang Multi-objective workflow scheduling based on genetic algorithm in cloud environment Inform. Sci. 2022 606 38 59
R. Noorian Talouki M. Hosseini Shirvani H. Motameni A hybrid meta-heuristic scheduler algorithm for optimization of workflow scheduling in cloud heterogeneous computing environment J. Eng., Design Technol. 2022 20 6 1581 1605
B. Keshanchi A. Souri N.J. Navimipour An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing J. Syst. Softw. 2017 124 1 21
J.J. Durillo V. Nae R. Prodan Multi-objective energy-efficient workflow scheduling using list-based heuristics Future Gener. Comput. Syst. 2014 36 221 236
S. Kaur P. Bagga R. Hans H. Kaur Quality of Service (QoS) aware workflow scheduling (WFS) in cloud computing: a systematic review Arab. J. Sci. Eng. 2019 44 2867 2897
H.O. Hassan S. Azizi M. Shojafar Priority, network and energy-aware placement of IoT-based application services in fog-cloud environments IET Commun. 2020 14 13 2117 2129
Z. Ahmad et al. Scientific workflows management and scheduling in cloud computing: taxonomy, prospects, and challenges IEEE Access 2021 9 53491 53508
M.H. Hilman M.A. Rodriguez R. Buyya Multiple workflows scheduling in multi-tenant distributed systems: a taxonomy and future directions ACM Comput. Surv. (CSUR) 2020 53 1 1 39
S. Yassir Z. Mostapha T. Claude Workflow scheduling issues and techniques in cloud computing: a systematic literature review Cloud Comput. Big Data: Technol., Appl. Secur. 2019 3 241 263
L. Versluis A. Iosup A survey of domains in workflow scheduling in computing infrastructures: community and keyword analysis, emerging trends, and taxonomies Future Gener. Comput. Syst. 2021 123 156 177
M. Hosseinzadeh M.Y. Ghafour H.K. Hama B. Vo A. Khoshnevis Multi-objective task and workflow scheduling approaches in cloud computing: a comprehensive review J. Grid Comput. 2020 18 327 356
Y. Kumar S. Kaul Y.-C. Hu Machine learning for energy-resource allocation, workflow scheduling and live migration in cloud computing: state-of-the-art survey Sustain. Comput.: Inform. Syst. 2022 36
M. Menaka K.S.S. Kumar Workflow scheduling in cloud environment–challenges, tools, limitations & methodologies: a review Meas.: Sens. 2022 24 100436
M. Masdari S. ValiKardan Z. Shahi S.I. Azar Towards workflow scheduling in cloud computing: a comprehensive analysis J. Netw. Comput. Appl. 2016 66 64 82
O.H. Ahmed J. Lu Q. Xu A.M. Ahmed A.M. Rahmani M. Hosseinzadeh Using differential evolution and moth-flame optimization for scientific workflow scheduling in fog computing Appl. Soft Comput. 2021 112
F. Hoseiny S. Azizi M. Shojafar R. Tafazolli Joint QoS-aware and cost-efficient task scheduling for fog-cloud resources in a volunteer computing system ACM Trans. Internet Technol. (TOIT) 2021 21 4 1 21
M. Hosseinzadeh S. Abbasi A.M. Rahmani Resource management approaches to internet of vehicles Multimed. Tools Appl. 2023 82 1 34
A.S. Abohamama A. El-Ghamry E. Hamouda Real-time task scheduling algorithm for IoT-based applications in the cloud–fog environment J. Netw. Syst. Manag. 2022 30 4 54
R. Mahmud K. Ramamohanarao R. Buyya Application management in fog computing environments: a taxonomy, review and future directions ACM Comput. Surv. (CSUR) 2020 53 4 1 43
R.K. Barik et al. Mist data: leveraging mist computing for secure and scalable architecture for smart and connected health Procedia Comput. Sci. 2018 125 647 653
W. Shi J. Cao Q. Zhang Y. Li L. Xu Edge computing: vision and challenges IEEE Internet Things J. 2016 3 5 637 646
S. Tuli R. Mahmud S. Tuli R. Buyya Fogbus: a blockchain-based lightweight framework for edge and fog computing J. Syst. Softw. 2019 154 22 36
F. Chiti R. Fantacci B. Picano A matching game for tasks offloading in integrated edge-fog computing systems Trans. Emerg. Telecommun. Technol. 2020 31 2
B. Kocot P. Czarnul J. Proficz Energy-aware scheduling for high-performance computing systems: a survey Energies (Basel) 2023 16 2 890
H. Shirvani A novel discrete grey wolf optimizer for scientific workflow scheduling in heterogeneous cloud computing platforms Sci. Iranica 2022 29 5 2375 2393 4406641
R. NoorianTalouki M.H. Shirvani H. Motameni A heuristic-based task scheduling algorithm for scientific workflows in heterogeneous cloud computing platforms J. King Saud Univer.-Comput. Inform. Sci. 2022 34 8 4902 4913
M. Tanha M. Hosseini Shirvani A.M. Rahmani A hybrid meta-heuristic task scheduling algorithm based on genetic and thermodynamic simulated annealing algorithms in cloud computing environments Neural Comput. Appl. 2021 33 16951 16984
M. Mokni S. Yassa J.E. Hajlaoui R. Chelouah M.N. Omri Cooperative agents-based approach for workflow scheduling on fog-cloud computing J. Ambient. Intell. Human. Comput. 2022 13 10 4719 4738
I. Pies P. Schreck K. Homann Single-objective versus multi-objective theories of the firm: using a constitutional perspective to resolve an old debate RMS 2021 15 779 811
G. Kousalya P. Balakrishnan C. Pethuru Raj G. Kousalya P. Balakrishnan C. Pethuru Raj J. Smith Workflow scheduling algorithms and approaches Automated workflow scheduling in self-adaptive clouds: concepts algorithms and methods 2017 Cham Springer 65 83
Ismayilov, G., Topcuoglu, H. R.: Dynamic multi-objective workflow scheduling for cloud computing based on evolutionary algorithms. In: 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), IEEE, pp. 103–108 (2018)
Nandhakumar, C., Ranjithprabhu, K.: Heuristic and meta-heuristic workflow scheduling algorithms in multi-cloud environments—A survey. In: 2015 International Conference on Advanced Computing and Communication Systems, IEEE, pp. 1–5 (2015)
H. Topcuoglu S. Hariri M.-Y. Wu Performance-effective and low-complexity task scheduling for heterogeneous computing IEEE Trans. Parallel Distrib. Syst. 2002 13 3 260 274
A.O. Abdalrahman D. Pilevarzadeh S. Ghafouri A. Ghaffari The application of hybrid krill herd artificial hummingbird algorithm for scientific workflow scheduling in fog computing J. Bionic Eng. 2023 20 1 22
S.S. Hajam S.A. Sofi Spider monkey optimization based resource allocation and scheduling in fog computing environment High-Conf. Comput. 2023 3 3
R. Madhura B.L. Elizabeth V.R. Uthariaraj An improved list-based task scheduling algorithm for fog computing environment Computing 2021 103 1353 1389 4279401
S.A. Alsaidy A.D. Abbood M.A. Sahib Heuristic initialization of PSO task scheduling algorithm in cloud computing J. King Saud Univer.-Comput. Inform. Sci. 2022 34 6 2370 2382
F. Li W.J. Tan W. Cai A wholistic optimization of containerized workflow scheduling and deployment in the cloud–edge environment Simul. Model. Pract. Theory 2022 118
E. Bugingo W. Zheng Z. Lei D. Zhang S.R.A. Sebakara D. Zhang Deadline-constrained cost-energy aware workflow scheduling in cloud Concurr. Comput. 2022 34 6
M.I. Khaleel Multi-objective optimization for scientific workflow scheduling based on performance-to-power ratio in fog–cloud environments Simul. Model. Pract. Theory 2022 119
M. Hosseini Shirvani R. Noorian Talouki Bi-objective scheduling algorithm for scientific workflows on cloud computing platform with makespan and monetary cost minimization approach Complex Intell. Syst. 2022 8 2 1085 1114
R. Alsurdeh R.N. Calheiros K.M. Matawie B. Javadi Hybrid workflow scheduling on edge cloud computing systems IEEE Access 2021 9 134783 134799
H. Li Y. Wang J. Huang Y. Fan Mutation and dynamic objective-based farmland fertility algorithm for workflow scheduling in the cloud J. Parallel Distrib. Comput. 2022 164 69 82
M. Mollajafari M.H. Shojaeefard TC3PoP: a time-cost compromised workflow scheduling heuristic customized for cloud environments Clust. Comput. 2021 24 3 2639 2656
N. Arora R.K. Banyal Workflow scheduling using particle swarm optimization and gray wolf optimization algorithm in cloud computing Concurr. Comput. 2021 33 16
C. Wu W. Li L. Wang A.Y. Zomaya Hybrid evolutionary scheduling for energy-efficient fog-enhanced internet of things IEEE Trans. Cloud Comput. 2018 9 2 641 653
L. Abualigah A. Diabat M.A. Elaziz Intelligent workflow scheduling for big data applications in IoT cloud computing environments Clust. Comput. 2021 24 4 2957 2976
A. Mohammadzadeh M. Akbari Zarkesh P. Haji Shahmohamd J. Akhavan A. Chhabra Energy-aware workflow scheduling in fog computing using a hybrid chaotic algorithm J. Supercomput. 2023 79 1 36
G. Singh A.K. Chaturvedi Hybrid modified particle swarm optimization with genetic algorithm (GA) based workflow scheduling in cloud-fog environment for multi-objective optimization Clust. Comput. 2023 27 1 18
M.I. Khaleel Hybrid cloud-fog computing workflow application placement: joint consideration of reliability and time credibility Multimed. Tools Appl. 2023 82 12 18185 18216
S. Iftikhar et al. HunterPlus: AI based energy-efficient task scheduling for cloud–fog computing environments Internet Things 2023 21
J.K. Konjaang L. Xu Meta-heuristic approaches for effective scheduling in infrastructure as a service cloud: a systematic review J. Netw. Syst. Manag. 2021 29 1 57
N. Bacanin M. Zivkovic T. Bezdan K. Venkatachalam M. Abouhawwash Modified firefly algorithm for workflow scheduling in cloud-edge environment Neural Comput. Appl. 2022 34 11 9043 9068
Y. Asghari Alaie M. Hosseini Shirvani A.M. Rahmani A hybrid bi-objective scheduling algorithm for execution of scientific workflows on cloud platforms with execution time and reliability approach J Supercomput 2023 79 2 1451 1503
H. Hafsi H. Gharsellaoui S. Bouamama Genetically-modified multi-objective particle swarm optimization approach for high-performance computing workflow scheduling Appl. Soft Comput. 2022 122
Y. Xie Y. Sheng M. Qiu F. Gui An adaptive decoding biased random key genetic algorithm for cloud workflow scheduling Eng. Appl. Artif. Intell. 2022 112
R.F. Mansour H. Alhumyani S.A. Khalek R.A. Saeed D. Gupta Design of cultural emperor penguin optimizer for energy-efficient resource scheduling in green cloud computing environment Clust. Comput. 2023 26 1 575 586
N. Khaledian K. Khamforoosh S. Azizi V. Maihami IKH-EFT: an improved method of workflow scheduling using the krill herd algorithm in the fog-cloud environment Sustain. Comput.: Inform. Syst. 2023 37
C.T. Kamanga E. Bugingo S.N. Badibanga E.M. Mukendi A multi-criteria decision making heuristic for workflow scheduling in cloud computing environment J. Supercomput. 2023 79 1 243 264
R. Rani R. Garg Pareto based ant lion optimizer for energy efficient scheduling in cloud environment Appl. Soft Comput. 2021 113
M. Hussain L.-F. Wei A. Rehman F. Abbas A. Hussain M. Ali Deadline-constrained energy-aware workflow scheduling in geographically distributed cloud data centers Future Gener. Comput. Syst. 2022 132 211 222
A.A. Mutlag et al. A new fog computing resource management (FRM) model based on hybrid load balancing and scheduling for critical healthcare applications Phys. Commun. 2023 59
D. Javaheri S. Gorgin J.-A. Lee M. Masdari An improved discrete Harris hawk optimization algorithm for efficient workflow scheduling in multi-fog computing Sustain. Comput.: Inform. Syst. 2022 36
H. Qiu X. Xia Y. Li X. Deng A dynamic multipopulation genetic algorithm for multiobjective workflow scheduling based on the longest common sequence Swarm Evol. Comput. 2023 78
Y. Wang X. Zuo An effective cloud workflow scheduling approach combining PSO and idle time slot-aware rules IEEE/CAA J. Automatica Sin. 2021 8 5 1079 1094
H. Li D. Wang G. Xu Y. Yuan Y. Xia Improved swarm search algorithm for scheduling budget-constrained workflows in the cloud Soft Comput. 2022 26 8 3809 3824
H. Li D. Wang J.R. Canizares Abreu Q. Zhao O. Bonilla Pineda PSO+ LOA: hybrid constrained optimization for scheduling scientific workflows in the cloud J. Supercomput. 2021 77 13139 13165
M.H. Shirvani A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systems Eng. Appl. Artif. Intell. 2020 90
S. Javanmardi M. Shojafar R. Mohammadi V. Persico A. Pescapè S-FoS: a secure workflow scheduling approach for performance optimization in SDN-based IoT-Fog networks J. Inform. Secur. Appl. 2023 72
J.K. Valappil Thekkepuryil D.P. Suseelan P.M. Keerikkattil An effective meta-heuristic based multi-objective hybrid optimization method for workflow scheduling in cloud computing environment Clust. Comput. 2021 24 2367 2384
Z. Wang M. Goudarzi M. Gong R. Buyya Deep reinforcement learning-based scheduling for optimizing system load and response time in edge and fog computing environments Future Gener. Comput. Syst. 2024 152 55 69
A. Kaur P. Singh R. Singh Batth C. Peng Lim Deep-Q learning-based heterogeneous earliest finish time scheduling algorithm for scientific workflows in cloud Softw. Pract. Exp. 2022 52 3 689 709
F.A. Saif R. Latip Z.M. Hanapi K. Shafinah Multi-objective grey wolf optimizer algorithm for task scheduling in cloud-fog computing IEEE Access 2023 11 20635 20646
H. Li J. Huang B. Wang Y. Fan Weighted double deep Q-network based reinforcement learning for bi-objective multi-workflow scheduling in the cloud Clust. Comput. 2022 25 1 18
G. Chen J. Qi Y. Sun X. Hu Z. Dong Y. Sun A collaborative scheduling method for cloud computing heterogeneous workflows based on deep reinforcement learning Future Gener. Comput. Syst. 2023 141 284 297
“Schedule Optimization Approaches and Use Cases.” Accessed: Feb. 23, 2024. [Online]. Available: https://www.altexsoft.com/blog/schedule-optimization/
Ziagham Ahwazi A.: Budget-aware scheduling algorithm for scientific workflow applications across multiple clouds. A Mathematical Optimization-Based Approach. May 2022, Accessed: Feb. 23, 2024. [Online]. Available: https://munin.uit.no/handle/10037/25932
K.K. Chakravarthi P. Neelakantan L. Shyamala V. Vaidehi Reliable budget aware workflow scheduling strategy on multi-cloud environment Clust. Comput. 2022 25 2 1189 1205
Y. Xie F.-X. Gui W.-J. Wang C.-F. Chien A two-stage multi-population genetic algorithm with heuristics for workflow scheduling in heterogeneous distributed computing environments IEEE Trans. Cloud Comput. 2021 11 1446
M. Xu et al. Genetic programming for dynamic workflow scheduling in fog computing IEEE Trans. Serv. Comput. 2023 16 267
F. Davami S. Adabi A. Rezaee A.M. Rahmani Distributed scheduling method for multiple workflows with parallelism prediction and DAG prioritizing for time constrained cloud applications Comput. Netw. 2021 201
S. Karami S. Azizi F. Ahmadizar A bi-objective workflow scheduling in virtualized fog-cloud computing using NSGA-II with semi-greedy initialization Appl. Soft Comput. 2024 151
H. Mikram S. El Kafhali Y. Saadi HEPGA: a new effective hybrid algorithm for scientific workflow scheduling in cloud computing environment Simul. Model. Pract. Theory 2024 130
S. Rathi R. Nagpal G. Srivastava D. Mehrotra A multi-objective fitness dependent optimizer for workflow scheduling Appl. Soft Comput. 2024 152
Y. Gu F. Cheng L. Yang J. Xu X. Chen L. Cheng Cost-aware cloud workflow scheduling using DRL and simulated annealing Digital Commun. Netw. 2024 10.1016/j.dcan.2023.12.009
L. Ye L. Yang Y. Xia X. Zhao A cost-driven intelligence scheduling approach for deadline-constrained IoT workflow applications in cloud computing IEEE Internet Things J. 2024 10.1109/JIOT.2024.3351630
S. Mangalampalli et al. Multi objective prioritized workflow scheduling using deep reinforcement based learning in cloud computing IEEE Access 2024 12 5373
H. Xie D. Ding L. Zhao K. Kang Q. Liu A two-stage preference driven multi-objective evolutionary algorithm for workflow scheduling in the Cloud Expert Syst. Appl. 2024 238
C. Lu J. Zhu H. Huang Y. Sun A multi-hierarchy particle swarm optimization-based algorithm for cloud workflow scheduling Future Gener. Comput. Syst. 2024 153 125 138
M. Mokni S. Yassa J.E. Hajlaoui M.N. Omri R. Chelouah Multi-objective fuzzy approach to scheduling and offloading workflow tasks in fog-cloud computing Simul. Model. Pract. Theory 2023 123
A. Mohammadzadeh M. Masdari Scientific workflow scheduling in multi-cloud computing using a hybrid multi-objective optimization algorithm J. Ambient. Intell. Human. Comput. 2023 14 4 3509 3529
P. Shukla S. Pandey DE-GWO: a multi-objective workflow scheduling algorithm for heterogeneous fog-cloud environment Arab. J. Sci. Eng. 2023 14 1 26
S. Ijaz E.U. Munir S.G. Ahmad M.M. Rafique O.F. Rana Energy-makespan optimization of workflow scheduling in fog–cloud computing Computing 2021 103 2033 2059 4301078
D. Subramoney C.N. Nyirenda Multi-swarm PSO algorithm for static workflow scheduling in cloud-fog environments IEEE Access 2022 10 117199 117214
X. Ma H. Xu H. Gao M. Bian Real-time multiple-workflow scheduling in cloud environments IEEE Trans. Netw. Serv. Manag. 2021 18 4 4002 4018
A. Belgacem K. Beghdad-Bey Multi-objective workflow scheduling in cloud computing: trade-off between makespan and cost Clust. Comput. 2022 25 1 579 595
H. Aziza S. Krichen A hybrid genetic algorithm for scientific workflow scheduling in cloud environment Neural Comput. Appl. 2020 32 15263 15278
Y. Hu H. Wang W. Ma Intelligent cloud workflow management and scheduling method for big data applications J. Cloud Comput. 2020 9 1 13
T. Dong F. Xue C. Xiao J. Zhang Workflow scheduling based on deep reinforcement learning in the cloud environment J. Ambient Intell. Human. Comput. 2021 12 1 13
S. Saeedi R. Khorsand S.G. Bidgoli M. Ramezanpour Improved many-objective particle swarm optimization algorithm for scientific workflow scheduling in cloud computing Comput. Ind. Eng. 2020 147
A. Choudhary M.C. Govil G. Singh L.K. Awasthi E.S. Pilli Energy-aware scientific workflow scheduling in cloud environment Clust. Comput. 2022 25 6 3845 3874
A. Mohammadzadeh M. Masdari F.S. Gharehchopogh Energy and cost-aware workflow scheduling in cloud computing data centers using a multi-objective optimization algorithm J. Netw. Syst. Manag. 2021 29 1 34
A. Iranmanesh H.R. Naji DCHG-TS: a deadline-constrained and cost-effective hybrid genetic algorithm for scientific workflow scheduling in cloud computing Clust. Comput. 2021 24 667 681
K. Lakhwani et al. Adaptive and convex optimization-inspired workflow scheduling for cloud environment Int. J. Cloud Appl. Comput. (IJCAC) 2023 13 1 1 25
A. Mohammadzadeh M. Masdari F.S. Gharehchopogh A. Jafarian Improved chaotic binary grey wolf optimization algorithm for workflow scheduling in green cloud computing Evol. Intell. 2021 14 1997 2025
Y. Gu C. Budati Energy-aware workflow scheduling and optimization in clouds using bat algorithm Future Gener. Comput. Syst. 2020 113 106 112
G. Sharma S. Khurana S. Harnal S.A. Lone CSFPA: an intelligent hybrid workflow scheduling algorithm based upon global and local optimization approach in cloud Concurr. Comput. 2022 34 23
M.C. Calzarossa M.L. Della Vedova L. Massari G. Nebbione D. Tessera Multi-objective optimization of deadline and budget-aware workflow scheduling in uncertain clouds IEEE Access 2021 9 89891 89905
M. Marwa J.E. Hajlaoui Y. Sonia M.N. Omri C. Rachid Multi-agent system-based fuzzy constraints offer negotiation of workflow scheduling in fog-cloud environment Computing 2023 105 7 1361 1393
R. Akraminejad N. Khaledian A. Nazari M. Voelp A multi-objective crow search algorithm for optimizing makespan and costs in scientific cloud workflows (CSAMOMC) Computing 2024 2024 1 17 10.1007/S00607-024-01263-4
N. Khaledian K. Khamforoosh R. Akraminejad L. Abualigah D. Javaheri An energy-efficient and deadline-aware workflow scheduling algorithm in the fog and cloud environment Computing 2024 106 1 109 137
G.U. Srikanth R. Geetha Effectiveness review of the machine learning algorithms for scheduling in cloud environment Arch. Comput. Methods Eng. 2023 30 1 21