Article (Périodiques scientifiques)
AI-based & heuristic workflow scheduling in cloud and fog computing: a systematic review
KHALEDIAN, Navid; VÖLP, Marcus; Azizi, Sadoon et al.
2024In Cluster Computing
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
AI based.pdf
Postprint Auteur (2.58 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Artificial intelligence; Cloud computing; Fog computing; Systematic survey; Workflow scheduling; Cloud environments; Cloud-computing; Data processing and analysis; Efficient scheduling; Heterogeneous dynamics; Performance; Scheduling techniques; Systematic Review; Software; Computer Networks and Communications
Résumé :
[en] Fog and cloud computing are emerging paradigms that enable distributed and scalable data processing and analysis. However, these paradigms also pose significant challenges for workflow scheduling and assigning related tasks or jobs to available resources. Resources in fog and cloud environments are heterogeneous, dynamic, and uncertain, requiring efficient scheduling algorithms to optimize costs and latency and to handle faults for better performance. This paper aims to comprehensively survey existing workflow scheduling techniques for fog and cloud environments and their essential challenges. We analyzed 82 related papers published recently in reputable journals. We propose a subjective taxonomy that categorizes the critical difficulties in existing work to achieve this goal. Then, we present a systematic overview of existing workflow scheduling techniques for fog and cloud environments, along with their benefits and drawbacks. We also analyze different workflow scheduling techniques for various criteria, such as performance, costs, reliability, scalability, and security. The outcomes reveal that 25% of the scheduling algorithms use heuristic-based mechanisms, and 75% use different Artificial Intelligence (AI) based and parametric modelling methods. Makespan is the most significant parameter addressed in most articles. This survey article highlights potentials and limitations that can pave the way for further processing or enhancing existing techniques for interested researchers.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KHALEDIAN, Navid  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX
VÖLP, Marcus  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX
Azizi, Sadoon;  Department of Computer Engineering and IT, University of Kurdistan, Sanandaj, Iran
Shirvani, Mirsaeid Hosseini;  Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
AI-based & heuristic workflow scheduling in cloud and fog computing: a systematic review
Date de publication/diffusion :
08 mai 2024
Titre du périodique :
Cluster Computing
ISSN :
1386-7857
Maison d'édition :
Springer
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 26 juillet 2024

Statistiques


Nombre de vues
171 (dont 13 Unilu)
Nombre de téléchargements
342 (dont 3 Unilu)

citations Scopus®
 
19
citations Scopus®
sans auto-citations
15
OpenCitations
 
0
citations OpenAlex
 
18
citations WoS
 
16

Bibliographie


Publications similaires



Contacter ORBilu