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Abstract
Fog and cloud computing are emerging paradigms that enable distributed and scalable data processing and analysis.

However, these paradigms also pose significant challenges for workflow scheduling and assigning related tasks or jobs to

available resources. Resources in fog and cloud environments are heterogeneous, dynamic, and uncertain, requiring

efficient scheduling algorithms to optimize costs and latency and to handle faults for better performance. This paper aims to

comprehensively survey existing workflow scheduling techniques for fog and cloud environments and their essential

challenges. We analyzed 82 related papers published recently in reputable journals. We propose a subjective taxonomy that

categorizes the critical difficulties in existing work to achieve this goal. Then, we present a systematic overview of existing

workflow scheduling techniques for fog and cloud environments, along with their benefits and drawbacks. We also analyze

different workflow scheduling techniques for various criteria, such as performance, costs, reliability, scalability, and

security. The outcomes reveal that 25% of the scheduling algorithms use heuristic-based mechanisms, and 75% use

different Artificial Intelligence (AI) based and parametric modelling methods. Makespan is the most significant parameter

addressed in most articles. This survey article highlights potentials and limitations that can pave the way for further

processing or enhancing existing techniques for interested researchers.
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Abbreviations
AI Artificial intelligence

HEFT Heterogeneous earliest finish time algorithm

GA Genetic algorithm

KHA Krill herd algorithm

EC2 Elastic compute cloud

AHA Artificial hummingbird algorithm

ML Machine learning

DVFS Dynamic voltage and frequency scaling

IoT Internet of things

SMO Spider monkey optimization

LE Low energy

VM Virtual machines

MCC Mobile cloud computing

VCPU Virtual CPU

MEC Mobile edge computing

PPR Performance-to-power ratio

DAG Directed acyclic graph

FOA Fruit fly optimization

T Set of tasks

FFA Farmland fertility algorithm

A Set of arcs

MHDA Multi-objective hybrid dragonfly algorithm

QoS Quality of service

SOS Symbiotic organisms search

EPC Event-driven process chain

GOA Grasshopper optimization algorithm

PSO Particle swarm optimization
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CA Cultural algorithm

FRM Fog computing resource management

EPO Emperor penguin optimizer

LCS Longest common subsequence

HMM Hidden Markov model

LOA Lion optimization algorithm

HHO Harris hawk optimization

NSGA Non-dominated sorting genetic algorithm

OSA Owl search algorithm

DDQN Double deep Q-network

SDN Software-defined network

CNN Convolutional neural networks

GGCN Gated graph convolution network

MLIP Mixed integer linear programming

ILP Integer linear programming

DEWS Deadline energy-aware workflow scheduling

MTGP Multi-tree genetic programming

1 Introduction

Workflow scheduling is a crucial process in many domains

and applications involving complex and interdependent

tasks that must be executed on distributed and heteroge-

neous resources in cloud and fog environments. Workflow

scheduling aims to optimize various objectives and criteria,

such as execution time, costs, energy consumption, quality

of service, and fault tolerance. However, workflow

scheduling is also a challenging problem that requires

sophisticated algorithms and techniques to cope with the

dynamic and uncertain nature of resources and workloads.

Workflow scheduling in cloud-fog environments presents

unique challenges due to their hierarchical nature and

complex tradeoffs [1]. Fog provides low-latency comput-

ing capabilities closer to the network edge and IoT devices

[2].

In contrast, the cloud offers high-capacity computing in

centralized data centers. Effective scheduling must balance

the tradeoffs between latency-sensitive fog resources and

computation-intensive cloud resources to meet application

requirements [3]. There are also multiple stakeholders like

subscribers, infrastructure providers, platform operators,

and application providers whose interests must be accom-

modated. The optimal usage of cloud-fog resources is

evaluated based on cost and energy consumption. Since

various stakeholders exist in the system, such as providers

and subscribers, the optimal use of cloud-fog resources is

assessed based on cost, energy consumption, and other

related metrics.

To this end, several single- or multi-objective schedul-

ing algorithms were extended in literature to favor users,

providers, or balance between both. Therefore, some

research is focused on these parameters and challenges [4].

For example, the cost issue involves various parameters

such as processing power, system performance, system

capacity, processing time, operation delay, and communi-

cation costs. A comprehensive study and evaluation of task

scheduling methods is essential in the fog environment to

achieve the mentioned objectives. According to the men-

tioned issues, it is necessary to have a survey in this field

that can categorize the existing methods, identify the most

critical parameters, and, finally, ezylana the tools and

techniques of simulation, algorithms, and practices. For

instance, Keshanchian et al. proposed a new genetic algo-

rithm (NGA) for solving task scheduling algorithms in a

cloud environment [5]. They verified their proposal on the

Microsoft Azure platform using C#. In addition, Durillo

et al. proposed an energy-efficient multi-objective work-

flow scheduling algorithm tested in a real Amazon EC2

platform [6]. Other state-of-the-art works utilize simulation

tools such as Python, MATLAB, WorkflowSim, etc.

Our main argument is that workflow scheduling is an

important and active research area that explores new con-

cepts and techniques to improve the efficiency and effec-

tiveness of the scheduling process. This survey provides a

comprehensive overview of the state-of-the-art workflow

scheduling methods for different environments. We cover

the following topics:

• Workflow scheduling concepts: Present a concise

tutorial on requirements, modelling, design techniques,

workflow architectures and datasets.

• Workflow scheduling models and frameworks: How are

workflow scheduling problems formulated and repre-

sented in a cloud-fog environment?

• Workflow scheduling algorithms and techniques: How

are fog and cloud workflow schedules generated and

evaluated?

• Workflow scheduling challenges and opportunities:

How do workflow scheduling methods deal with

various issues and limitations?

• Workflow scheduling simulations: The most recent and

diverse simulation techniques frequently employed in

fog and clouds are also discussed and contrasted.

The subsequent sections of this paper will delve into a

review of prior works. Section 2 will focus on Related

Work, examining the evolution of workflow scheduling

methodologies and highlighting critical contributions in the

field. Section 3 will examine the research method. In

Sect. 4, we propose a taxonomy, and we describe concepts

and background. Then, Sect. 5 will thoroughly analyze

selected articles, meticulously categorizing and comparing
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the methodologies, criteria, and parameters utilized in their

evaluation. Finally, in Sect. 6, we aim to address the

research questions posed, discussing the associated diffi-

culties and open challenges within the field.

2 Related works

This section meticulously analyses recent survey papers,

reviews, and related works focusing on workflow

scheduling. By meticulously examining their strengths and

weaknesses, this analysis aims to provide a comprehensive

understanding of the current landscape in the field. Amidst

the paramount challenge of resource management,

numerous scholarly articles have explored quality param-

eters and their profound impact on workflow scheduling.

In the paper [7], Kaur focuses on qualitative parameters,

investigating critical challenges, including energy man-

agement, resource cost, reliability, and security. Service

delivery hinges significantly on reliable execution; while

some businesses may tolerate slower response times, they

cannot afford service disruptions, ultimately leading users

to abandon unreliable service providers. As cloud/fog

resources are susceptible to different kinds of failure,

engaging reliable resources is critical for reliable execution

to subscribers [8]. This article reached the classification of

other methods in the control of workflow, and based on it,

it classified, reviewed, and analyzed the articles, which is

also influential in determining the simulation tools. The

main issue that can be considered for the development of

this article is its limitation to cloud environments that do

not cover the domain of fog or the combination of cloud

and fog. It is also necessary to make the definitions of

quality control parameters more precise and transparent. It

should be stated so that there is a unified definition during

the analysis of the articles. Ahmad et al. [9] had a shared

vision with this article, with the difference that they are

also limited in terms of the type of workflow by having

worked in the field of scientific workflow only.

Hilman et al. [10] adopt a comprehensive approach,

focusing primarily on multi-tenant distributed environ-

ments, explicitly focusing on cloud and grid environments.

The central vision of this work is based on essential chal-

lenges related to workflow management, and parameters

such as workload volume, reliability, cost, and security

have been considered according to the needs of distributed

environments. In addition to the fact that several qualitative

parameters have been considered and different solutions

and algorithms have been analyzed based on meht, the part

related to simulation has yet to be deemed essential and is

left or future work. On the other hand, Yassir et al. [11]

offer a more detailed examination of parameters, method-

ologies, and simulation tools within cloud environments.

They raise pertinent questions concerning reviewing and

evaluating results stemming from proposed methods.

Notably, their exploration of timing encompasses dynamic

and static forms, prompting the expansion of research

inquiries rooted in these temporal dynamics. However,

their taxonomy remains limited and warrants further elab-

oration to achieve comprehensiveness.

In their study [12], Versluis et al. presented a step-by-

step taxonomy for resource management and workflow

management, and the article’s explanation based on this

point of view is completed. Based on this classification, the

assignment of workflow and the supply of resources is

divided, classified, and described, and in the next step, the

evaluation part is also checked. Allocation techniques have

a broader category than previous works, and articles have

been selected and analyzed based on heuristic algorithms

and mathematical models. However, there is a need to

specify acceptance, development, and evaluation criteria

within this framework to ensure clarity and consistency.

Additionally, expanding the scope beyond cloud environ-

ments and exploring similar environments is essential to

provide a comprehensive understanding of resource and

workflow management practices.

Hosseinzadeh et al. [13] extensively examine multi-ob-

jective scheduling methods for cloud computing, employ-

ing metaheuristic optimization techniques. The article

meticulously categorizes, analyzes, and reviews various

solutions within this domain, offering detailed insights into

their characteristics and functionalities. It systematically

organizes these solutions based on the types of optimiza-

tion algorithms employed and elucidates their application

in addressing scheduling challenges. Additionally, the

article conducts comparative assessments among these

methods and outlines potential avenues for future research.

The findings and contributions of the study are summa-

rized, highlighting its significance in advancing under-

standing within the field. This article thoroughly examines

and categorizes solutions, analyzes metaheuristic algo-

rithms in depth, and classifies quality parameters such as

execution time, cost, energy consumption, and error pre-

vention. However, the review of the simulation aspect still

needs to be completed, necessitating further analysis and

categorization of the tools and techniques utilized in this

context.

Due to advancements in artificial intelligence-based

solutions, there has been a notable shift in workflow

management approaches. Kumar et al. [14] gave a com-

prehensive overview of the existing machine learning

methods for energy-resource allocation, workflow

scheduling, and live migration in cloud computing, as well

as a taxonomy of their essential challenges. Machine

learning is a branch of artificial intelligence that allows

systems to learn from data and improve performance
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without explicit programming. Machine learning can help

to optimize various aspects of cloud computing, such as

energy consumption, resource utilization, service quality,

and reliability. The article introduces a taxonomy catego-

rizing crucial challenges, such as resource heterogeneity,

workload dynamism, uncertainty, and optimization. It

subsequently provides a systematic overview of existing

machine learning methods for energy-resource allocation,

workflow scheduling, and live migration in cloud com-

puting, detailing their merits and drawbacks. The evalua-

tion encompasses diverse criteria: performance, cost,

reliability, scalability, and security. Menaka et al. [15]

addressed a commonly overlooked aspect in many articles

by offering a systematic overview of existing workflow

scheduling tools and methods in cloud computing, along

with their respective advantages and disadvantages. The

paper divides the tools and techniques into four groups:

heuristic-based, metaheuristic-based, machine learning-

based, and hybrid methods. Table 1 compares literature

based on the main topic, shortcomings, and how our work

highlights points.

According to Table 1, there are three main limitations in

the previous articles:

• Limitation 1: Focus on a specific domain, cloud, or fog

[7, 9, 12, 14].

• Limitation 2: No classification or taxonomy for work-

flow scheduling methods [11, 12].

• Limitation 3: Lack of examination of software solu-

tions, systems, algorithms, methods, and evaluation

parameters [10, 12, 14, 15].

In this review paper, we avoid these weaknesses and

cover the limitations of the research questions.

3 Research methodology

This section outlines our research approach, methods

employed, and the selection criteria for the papers included

in our study. The process involved four key steps: defining

research questions, selecting relevant databases, specifying

search terms, and filtering papers. Each step is detailed

below.

Table 1 State-of-the-art comparisons based on merits and limitations

References Main topic Year Limitation Our contribution

[7] Quality of service in

workflow management

2019 It is limited to cloud infrastructure We investigate workflow management in different

environmental conditions and combined cloud

and fog environments

[9] Quality of service in

scientific workflow

management

2021 It is limited to cloud infrastructure and

even scientific workflow management

we investigate workflow management in different

environmental conditions and combined cloud

and fog environment

[10] Workflow scheduling in

distributed systems

2020 The evaluation section must be

considered based on different criteria

and simulation tools

We added questions about tools, evaluation

criteria, and techniques

[11] Techniques, evaluation

parameters, and methods

for workflow

management

2019 Taxonomy and view must be considered,

and it is limited to cloud infrastructure

We proposed a comprehensive taxonomy,

investigated workflow management in different

environmental conditions, and combined cloud

and fog environments

[12] Workflow and resource

management in the

cloud environment

2021 Evaluation criteria must be considered,

and this paper is limited to cloud

environment

we investigate workflow management in different

environmental conditions and combined cloud

and fog environment

[13] Workflow and resource

management in the

cloud environment

2020 Evaluation criteria must be considered,

and this paper is limited to cloud

environment

we investigate workflow management in different

environmental conditions and combined cloud

and fog environment

[14] Workflow management in

a cloud environment

based on machine

learning

2022 limited to the cloud environment, and

evaluation is not considered in detail

We added questions about tools, evaluation

criteria, and techniques. We investigate

workflow management in different

environmental conditions and combined cloud

and fog environments

[15] Workflow management in

the cloud with tools

focusing

2022 There is no classification or analytical

diagram for the tools and evaluation

part. It is limited to the cloud

environment

We added questions about tools, evaluation

criteria, and techniques. We investigate

workflow management in different

environmental conditions and combined cloud

and fog environments
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4 Research questions

This paper is structured to address the following research

questions:

RQ1 How do the different methods of scheduling work-

flows in a fog-cloud environment work, and what are their

categories?

RQ2 Which of the various workflow scheduling algo-

rithms and datasets have been suggested, and which have

been more popular?

RQ3 What tools have been employed to simulate and

implement the methods that have been studied?

RQ4 What parameters are used to assess the performance

of workflow scheduling methods in a fog-cloud

environment?

RQ5 What are the future challenges and open issues for

workflow scheduling in a fog-cloud environment?

4.1 Databases

The papers have been selected from authentic and well-

reputed publications to prepare the current survey study—

Figs. 1 and 2 show selected papers per database and year.

We selected papers from four different databases and

focused on papers published in recent years. Our criteria

were strict, emphasizing recent publications to maintain

relevance and timeliness.

We sourced papers from four databases known for their

academic excellence and relevance to the field. This

approach aimed to capture various perspectives and

insights on the topic.

4.2 Terms and principles

The following search terms were utilized in our database

search:

• ‘‘Workflow scheduling’’ AND ‘‘Cloud’’

• ‘‘Workflow scheduling’’ AND ‘‘Fog’’

• ‘‘Workflow scheduling’’ AND Fog’’ AND ‘‘Cloud’’

• ‘‘Workflow’’ AND ‘‘Cloud’’

• ‘‘Workflow’’ AND ‘‘Fog’’

• ‘‘Workflow’’ AND ‘‘Fog’’ AND ‘‘Cloud’’

• ‘‘Workflow’’ AND ‘‘mathematical’’ AND ‘‘Fog’’ OR

‘‘Cloud’’

The principles guiding our inclusion criteria are:

• Papers must be published in English.

• Selection preference is given to journal papers.

• The articles considered were published from 2020 to

March 2024.

Exclusion principles encompass:

• Papers need more transparency in simulation method-

ologies and more precise evaluation criteria.

• Articles addressing general scheduling without direct

mention of workflow.

• Conference papers.

The application of these criteria served as the basis for

paper selection. The research methodology according to the

PRISMA template is shown in Fig. 3.

Fig. 1 Selected papers per

database
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5 Concepts and background

This section presents a taxonomy and a concept review of

workflow scheduling in distributed environments. Initially,

we scrutinize the architectures and properties of cloud and

fog environments. Subsequently, we introduce a taxonomy

tailored for workflow management, employing it to eluci-

date concepts in greater detail. Furthermore, we evaluate

existing systems in this domain, assessing their alignment

with the proposed taxonomy.

5.1 Cloud fog environments

The Internet of Things (IoT) refers to a network of inter-

connected devices capable of communication and data

sharing via the Internet. In a cloud-fog environment, cloud

and fog computing technologies are leveraged to manage

and store data originating from IoT devices. Cloud com-

puting operates as a centralized service, providing high

performance and storage capabilities, albeit potentially

encountering high latency and cost implications [16]. On

the other hand, fog computing functions as a distributed

service, offering lower latency and facilitating local pro-

cessing, though it may have limitations in capacity and

reliability [17]. Cloud-fog environments aim to optimize

some criteria, such as latency, energy consumption, cost, or

quality of service, by considering the characteristics and

constraints of tasks and resources [18]. A cloud-fog envi-

ronment can be used for applications and services that do

not fit the paradigm of the cloud, including connected

vehicles, smart grids, smart cities, and wireless sensors and

actuator networks.

In the realm of IoT, resources are categorized based on

distinct layers and technological types. The physical layer

comprises connected devices and equipment at the foun-

dational level. The intermediary layer is the network and

communication layer, encompassing network protocols and

standards capable of executing real-time operations. The

application and service layer is positioned atop, concep-

tualized as a cloud or fog layer, tailored to address diverse

requirements [19]. Within a cloud-fog environment, there

exists a potential to enhance the performance and respon-

siveness of applications. This improvement is facilitated by

processing data close to both the data source and the end

user, thereby minimizing latency and bolstering overall

efficiency.

A cloud-fog environment can extend across a vast area,

employing a network of interconnected fog nodes com-

municating with each other and the cloud. This setup

facilitates device and user mobility accommodation, with

fog nodes adapting to evolving network conditions. We can

manage many devices and users by using fog nodes that

can grow and shrink according to the demand. This envi-

ronment can support real-time applications that have strict

requirements on latency, reliability, and quality of service,

but this may need advanced scheduling and optimization

algorithms [20]. Figure 4 illustrates a layered architecture

representing the distributed environment, incorporating

elements like IoT, cloud computing, and fog computing.

In addition to fog and cloud environments, there is also

an edge environment. Application execution is facilitated

by fog and edge computing when data sources are nearby.

To be more specific, Edge computing handles processing at

IoT device gateways. One example of an IoT gadget would

be a smartwatch. Typically, end users utilize Bluetooth

Low Energy (LE) networking to link smartwatches to

smartphones to get mobile notifications while driving or

walking. In this case, smartphones serve as wristwatch IoT

Fig. 2 Selected papers per year

Cluster Computing

123



gateways. Smartwatches simultaneously monitor users’

heart rates, blood pressure, and oxygen saturation levels.

Edge computation occurs when a wristwatch sends data to

a smartphone application for processing.

Comparatively speaking, fog computing processes IoT

data by utilizing IoT gateways and additional edge network

computing components, including smart routers, PCs,

Raspberry Pi devices, and even micro-datacenters. Edge

computing has some drawbacks despite being able to

address many IoT-related problems. They are less capable

of running complicated, large-scale applications over

extended periods. Nonetheless, Edge node management

primarily focuses on the user, integrating only reactive

fault-tolerant features [21, 22]. By utilizing relatively

strong resources at the user premises level and reducing the

workload associated with resource and application service

management from the users, fog computing gets over these

Edge restrictions.

Fig. 3 Research methodology

based on the PRISMA template
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Additionally, fog computing keeps up smooth connec-

tivity with cloud data centers, which ultimately provide a

vast platform for IoT application execution. Table 2 lists

the significant distinctions between Edge and Fog com-

puting [21]. In some research works, Edge computing is

viewed as a superset that includes all paradigms where the

computation is moved to the edge network, such as Fog

computing, Mobile Cloud computing (MCC), and Mobile

Edge Computing (MEC) [23]. In other research works,

however, Edge computing is considered a subset of Fog

computing [24]. Additionally, Chiti et al. [25] provide

additional instances in which Fog and Edge computing are

utilized interchangeably. Furthermore, Edge computation

is sometimes considered a service model provided by

several paradigms, such as Fog, Mist, and Dew computing.

However, fog computing is considered one of the most

viable modern paradigms because of its broad support for

Internet of Things applications.

5.2 Workflow and scheduling concepts

A typical workflow comprises a set of tasks with potential

dependencies between each pair of tasks. These workflow

applications are commonly represented as directed acyclic

graphs (DAG) [26]. In other words, a workflow (W) is

modelled in W =\ T, A[ , in which T is a set of tasks,

and A is a set of arcs that indicates a dependency between

tasks. In addition, a set A is determined in A = {( ti; tj)|

ti; tj�T and tj0s execution depends on ti0s output}. For

example, scientific workflow applications like SIPHT,

LIGO, and Cybershake follow this model [27, 28]. Fig-

ure 5 illustrates a Molecular workflow application used in

Physic dynamics for simulations of molecular movement

[29].

It is important to note that each ti within the set of tasks

T represents a block of code determined during compile

time. A vital question arises regarding the efficient exe-

cution of workflow applications. ‘‘How can we distribute

workflows and tasks among computing resources in a fog-

cloud environment?’’ This is the question that work

scheduling in cloud fog tries to answer. Fog computing

extends cloud computing to the network’s edge, where

devices like sensors, cameras, or smartphones can handle

some tasks locally. In contrast, others can be offloaded to

the cloud for processing. Work scheduling in cloud fog

aims to find the best way to assign tasks to resources based

on various factors, such as latency, energy consumption,

cost, or quality of service, and consider the features and

limitations of the tasks and the resources.

In this article, we focus on workflow management. It is

essential to distinguish between workflow management and

task scheduling, primarily regarding the extent and timing

of the work involved. The problem of high-level uncer-

tainty in the workflow parameters affects the execution of

lengthy workflow. This is because more than the infor-

mation at run time and the structural information of

workflow is needed for the scheduling algorithms. Work-

flow scheduling is a process of assigning tasks to resources

in a way that optimizes some criteria, such as latency, cost,

Fig. 4 IoT layered architecture as a cloud-fog environment

application

Table 2 Edge and fog [21]

Facts Edge Fog

Place of

operation

Gateway devices Specialized networking

and computing machines

Elementary

hardware

Programmable logic

controller

Single-board computer

Wireless

standard

Bluetooth and Wi-Fi Wi-Fi and LTE

Policy manager users Service providers

Application

deployment

Installed by user Request by a user to a

service provider

Resource

assignment

shared Shared or virtualized

Application user

mapping

Multiple

application, single

user

Multiple applications,

multiple users

Resource

orientation

Peer-to-peer, ad hoc Cloud of Things

Cloud

communication

Event-driven seamless

Fault tolerance

techniques

User-defined

exception

handling

Proactive and reactive

Extended from Personalized

computing

environments

Cloud computing
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or quality of service. Workflow scheduling requires more

work upfront, but all the work is completed

simultaneously.

The processing and scheduling of workflows can vary

depending on their type, often combining stream process-

ing, which is highly sensitive to delay, and batch pro-

cessing, which involves less time sensitivity but requires

more intensive calculations for extensive data analysis. For

this article, we will provide a general example. As depicted

in Fig. 6, the workflow consists of ten tasks processed

based on their work sequence, resource allocation, and

scheduling. Initially, a sequence of tasks is determined

according to the desired algorithm. Subsequently, based on

the objective function (such as delay sensitivity, energy

consumption, or completion time), the tasks are scheduled

onto resources within the fog or cloud environment.

Workflows sensitive to delay are prioritized for execution

on fog nodes, while others may not be sent to the cloud.

Determining task sensitivity is the responsibility of the Fog

Broker, which centrally manages task scheduling and cre-

ates the most suitable workflow schedule.

In the field of workflow scheduling, several critical

considerations must be addressed. It is possible to schedule

workflows and resource allocation with different con-

straints based on various requirements and quality of ser-

vice parameters. Also, the issue of cost and energy

consumption should be taken into consideration in allo-

cating resources. Figure 8 introduces a taxonomy for

workflow management in cloud fog environments, delin-

eating parameters, constraints, tools, criteria, and a general

classification of methods. This taxonomy serves as a

foundational framework elaborated upon in subsequent

sections of the article by analyzing various solutions.

Single-Objective Optimization focuses on optimizing a

single objective function to find the best solution. This

approach excels in scenarios where the optimization goal is

clear and unambiguous. For instance, minimizing produc-

tion costs while adhering to constraints in manufacturing

scheduling exemplifies single-objective Optimization. This

approach is straightforward, as the superiority of one

solution over another is determined by comparing their

objective function values.

Multi-Objective Optimization, on the other hand,

involves optimizing multiple conflicting or complementary

objectives simultaneously. Rather than directly comparing

solutions, dominance determines their goodness. A solution

is Pareto optimal if no other solution improves one

objective without worsening another. Multi-objective

Optimization offers a broader perspective, considering

trade-offs and diverse objectives. For example, in vehicle

design, the objectives include maximizing performance

while minimizing fuel consumption and emissions [31].

Both techniques find applications in various domains,

including cloud computing. While single-objective Opti-

mization is more straightforward and faster, multi-objec-

tive Optimization provides a comprehensive exploration of

trade-offs, leading to informed decision-making and

superior outcomes. This approach helps consider various

factors such as execution time, cost, energy consumption,

and quality of service simultaneously, leading to more

informed decision-making and better optimization out-

comes in cloud environments and beyond.

5.2.1 Workflow scheduling types

5.2.1.1 Dynamic workflow scheduling The dynamic

scheduling process in workflow scheduling involves allo-

cating tasks to resources in response to the changing con-

ditions and requirements of the workflow and the

environment. Unlike static scheduling, which assumes

fixed and known information about tasks and resources

beforehand, dynamic scheduling is more suitable for cloud

computing environments where resources and workloads

are diverse, uncertain, and dynamic. It aims to optimize

various criteria, such as execution time, cost, energy, reli-

ability, or quality of service, by considering the features

and limitations of workflows and resources [32]. Some

essential steps in the dynamic scheduling process include

[32, 33]:

• The workflow is represented as a directed acyclic graph

(DAG), where the nodes represent the tasks and the

edges represent the dependencies and data transfers

between the tasks.

Fig. 5 Molecular workflow with 41 tasks and 72 arcs [30]

Cluster Computing

123



• They are estimating the parameters of the tasks and the

resources, such as the execution time, the data size, the

resource capacity, the resource availability, and the

resource cost. These parameters may vary over time and

may not be known precisely in advance.

• It is choosing a scheduling algorithm that can deal with

the unpredictability and variability of the parameters

and balance the trade-offs between the optimization

criteria.

• They perform the tasks on the resources according to

the scheduling algorithm and monitor the progress and

performance of the workflow. If there are any changes

or failures in the tasks or the resources, the scheduling

algorithm may need to reschedule or move the tasks to

other resources.

• They are evaluating the results and the performance of

the workflow and the scheduling algorithm and com-

paring them with the expected outcomes and the

optimization criteria.

5.2.1.2 Static workflow scheduling Static workflow

scheduling is an algorithm that assigns tasks to resources

based on fixed and known information. This approach

assumes that task and resource parameters, such as exe-

cution time, data size, resource capacity, availability, and

cost, remain constant. By leveraging mathematical models

and optimization techniques, static workflow scheduling

aims to optimize criteria like execution time, cost, energy,

reliability, or quality of service. It is well-suited for envi-

ronments characterized by uniform, predictable, and

stable resources and workloads. In contrast to dynamic

workflow scheduling, static scheduling often outperforms

scenarios where workflow-level scheduling decisions are

crucial. However, it comes with potential drawbacks,

including higher overhead and complexity, attributed to the

necessity of solving large-scale optimization problems

[32].

Figure 7 visualizes the proportional distribution

between these two scheduling types.

5.2.2 Workflow scheduling architectures

A workflow scheduling architecture is a system design and

structure that aims to optimize the execution of workflows

across various computing resources. These architectures

can be classified into different types based on several cri-

teria, including the level of abstraction, degree of distri-

bution, mode of operation, and optimization approach.

Below are examples of workflow scheduling architecture

types [32].

Centralized vs. distributed: In a Centralized Architec-

ture, a singular scheduler assumes control over resource

allocation and task execution across the workflow. Con-

versely, a Distributed Architecture employs multiple

Fig. 6 An example of

scheduling a DAG in fog

computing

Fig. 7 Distribution of scheduling types: dynamic vs. static
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schedulers, which may operate autonomously or collabo-

ratively, managing distinct workflows or sub-workflows.

These contrasting approaches offer unique advantages and

considerations in optimizing workflow execution across

diverse computing environments.

5.2.3 Workflow modelling

Workflow models serve as unique representations of the

tasks and activities within a workflow management system.

A workflow could be a set of forbidden assignments that

must be executed in a particular arrangement to realize a

specific objective. A workflow captures the basic properties

of the errands, such as their inputs, yields, preconditions,

post-conditions, activities, exceptional cases, and traits. A

workflow also characterizes the connections and conditions

among the assignments, such as their grouping, parallelism,

synchronization, and branching.

Various diagrams and graphs are utilized to depict dif-

ferent aspects of workflows:

5.2.3.1 Petri net Directed arcs connect the two types of

nodes that make up a Petri net: places and transitions.

Tokens indicate the system’s current state and can be

stored in areas. If sufficient tokens exist in the transitions’

input locations, they can initiate, generate, and consume

tokens following the arc weights. Transitions can simulate

concurrency, synchronization, choice, and iteration

because they fire in a nondeterministic manner. This kind

of workflow modelling displays a workflow’s state and

progression. It uses bars for transitions (events) and circles

for locations (states). Petri nets are helpful in simulating

workflow concurrency and synchronization, as well as

conflicts and deadlocks. This model makes it easier to

specify workflow applications and acts as a firm.

5.2.3.2 Dataflow graph This kind of workflow modelling

displays the computation of a workflow together with the

data. It employs edges for data (values) and nodes for

operations (functions). Dataflow graphs are helpful in

simulating workflow dependencies and parallelism, as well

as data processing and Optimization. The assignment and

coordination of computational modules among processing

resources, or scheduling, is crucial in dataflow-based

design processes that influence real-world performance

metrics like latency, throughput, energy consumption, and

memory requirements. A formal abstraction for scheduling

in dataflow-based design processes is offered by dataflow

schedule graphs (SDGs). With the DSG abstraction,

schedule designers can represent a schedule as a distinct

dataflow graph, giving rise to a formal, abstract, and lan-

guage- and platform-independent representation of the

schedule [17].

5.2.3.3 Event-driven process chain (EPC) This workflow

chart shows a workflow’s control and work. It employs

circles for occasions (states) and hexagons for capacities

(exercises). EPCs are valuable for modelling a workflow’s

rationale and semantics, as well as the exemptions and

varieties. An EPC chart may be a graphical and scientific

demonstration that can be utilized to depict and analyze the

behaviour of concurrent and disseminated frameworks.

This could capture the conditions, conditions, circles, and

parallelism among the exercises of a handle [4].

5.2.3.4 Directed-acyclic graph (DAG) It could be a chart in

which the edges have a course, and there are no cycles,

meaning that no vertex can reach itself through an

arrangement of advantages. DAGs are commonly utilized

to speak to complex connections between errands in a

workflow, such as the conditions, conditions, circles, and

parallelism among the activities of a handle. A workflow

chart includes a single source vertex and a single sink

vertex; each vertex goes from the source to the sink. A

workflow chart can capture the causal structure among the

factors included in a handle and give a basis for choosing

bewildering aspects to alter when assessing causal impacts.

6 Task description

Task Descriptions play a pivotal role in workflow

scheduling. They provide a written explanation of each

workflow step’s purpose, inputs, outputs, dependencies,

roles, and deadlines. A task description can make the

process more transparent and beneficial for all stakehold-

ers. Bridging the gap between abstract workflow models

and practical execution contributes to efficient task com-

pletion and successful project outcomes.

Figure 8 is designed based on our proposed taxonomy.

Other features of the taxonomy become more detailed

throughout our paper.

7 Workflow scheduling methods
and algorithms

A general classification of methods can be found according

to the methods and algorithms used in various articles. A

group of methods uses heuristic algorithms; another uses

modelling and other AI-based methods and parametric

modelling for workflow scheduling. Parametric modelling

typically denotes approaches where parameters or mathe-

matical relationships characterize the problem.
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7.1 Heuristic algorithms

Heuristic workflow scheduling is an algorithm that uses

simple rules and strategies to allocate tasks to resources in

a cloud computing environment. Heuristic workflow

scheduling differs from meta-heuristic workflow schedul-

ing, which employs more advanced and complex methods,

such as evolutionary algorithms, swarm intelligence algo-

rithms, or reinforcement learning algorithms, to find the

best or near-best solution for the workflow scheduling

problem. Heuristic workflow scheduling is also different

from hybrid workflow scheduling, which combines

heuristic and meta-heuristic methods to enhance the per-

formance and efficiency of workflow scheduling. In addi-

tion, Heuristic architectures use simple, fast algorithms that

provide near-optimal solutions to a given problem. Meta-

heuristic architectures use general-purpose, flexible algo-

rithms that explore large search spaces and offer high-

Fig. 8 Proposed subjective

taxonomy for workflow

scheduling management
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quality solutions to various issues. Heuristic workflow

scheduling can deal with large-scale and complex work-

flows, as it can shrink the search space and the complexity

of the problem. Heuristic workflow scheduling may not

balance the trade-offs between the criteria, as it may prefer

one standard over another or use a fixed priority order [34].

List scheduling is a heuristic scheduling algorithm that

lists all tasks in the graph according to their priorities.

These algorithms have two phases. The first phase is task

prioritization or selection. In this phase, tasks with the

highest priority are selected and placed in a list or queue

ready for execution. The second phase is processor selec-

tion. In this phase, a processor that has the lowest cost is

selected. The cost can be the task completion time, mon-

etary cost, energy, etc. Some of the methods in this group

are the heterogeneous earliest finish time algorithm [35]

HEFT, modified critical path, dynamic level scheduling

and heuristic mapping. The Heterogeneous Earliest Finish

Time (HEFT) method is used to discover the order of task

flow execution [36]. Effective scheduling methods are

needed to lower the energy consumption to assign tasks to

the most suitable resources. This paper presents a binary

model that uses a combination of the Krill Herd Algorithm

(KHA) and the Artificial Hummingbird Algorithm (AHA)

as Binary KHA-AHA (BAHA-KHA). KHA enhances

AHA. The paper also uses the dynamic voltage and fre-

quency scaling (DVFS) method to solve the local optimal

problem for task scheduling in FC environments. The paper

by Hajam et al. [37] introduces a spider monkey opti-

mization algorithm with heuristic initialization for resource

allocation and scheduling in a fog computing network. The

algorithm reduces the total cost of tasks by selecting the

best fog nodes. The paper suggests and compares three

ways to initialize the SMO algorithm based on the longest

job’s fastest processor, the shortest job’s fastest processor,

and the minimum completion time. The paper also presents

a mathematical system model to solve the optimization

problem.

Among these methods, list scheduling is usually more

practical and provides better performance results in less

time than other groups. The algorithms in this group divide

the tasks in a given graph into unlimited clusters. In each

step, the tasks selected for clustering can be any task, not

necessarily a ready task. In each iteration, the previous

cluster is modified by merging some clusters. If two tasks

are assigned to the same cluster, they will be executed on

the same processor. Clustering heuristics require additional

steps to produce a final schedule, the cluster merging step.

To merge clusters so that the number of remaining clusters

is equal to the number of processors, a cluster mapping step

is required to map clusters to available processors. A task

sequencing step is required to sequence the mapped tasks

on each processor [35, 38]. Task duplication algorithms

Task duplication scheduling attempts to reduce communi-

cation delays by executing some of the previous tasks on

more than one virtual machine. Task duplication algo-

rithms differ based on the task selection strategy for

duplication [39]. The algorithms in this group are usually

for an unlimited number of identical processors, and their

complexity is much higher than that of algorithms in other

groups. A group of researchers have used multi-objective

mathematical models to cover various parameters. Noorian

Talouki et al. [28] proposed a method for scheduling tasks

in cloud computing, where the goal is to optimize the time

of the task execution. The tasks depend on each other and

must be executed in order. The method uses a new task

priority strategy and a task duplication method that lowers

the execution time.

In [40], Li et al. used several combined strategies. They

designed a three-step model for scheduling and deploying

container-based workflows in a cloud-edge environment. A

cloud-edge environment is a hybrid system that combines

cloud computing and edge computing. Cloud computing is

a way of providing and using computing resources over the

Internet. Edge computing is a way of supplying and using

computing resources near the users or data sources. Con-

tainer-based workflows are workflows that use containers

for packaging and running tasks. Containers are light-

weight and isolated units that can run on different

machines. The first step of the model is to allocate a virtual

CPU (vCPU) for each container so that other containers

can share vCPU. The second step is to schedule the con-

tainers to virtual machines (VM), simulated machines that

run on physical devices. The third step is to schedule the

VM to physical machines, which are either in the cloud or

at the edge.

The model considers multiple goals, such as reducing

the time, the imbalance, and the energy use for both the

cloud-edge resources and the container-based workflows.

The model uses three evolutionary strategies and two

multi-objective algorithms to find optimal solutions. Bug-

ingo et al. [41] worked on cost optimization and energy

consumption in scheduling workflows. This article pro-

poses a heuristic algorithm which determines a weight for

resource selection and allocation criteria in two steps. First,

the resource is selected according to the capacity and fre-

quency of the CPU. This method works by adjusting the

voltage and frequency of the processor to reduce power and

energy consumption. In [42], Khaleel proposed a dis-

tributed algorithm for scheduling scientific workflows on

cloud and fog resources. The algorithm aimed to optimize

two objectives: energy consumption and scheduling relia-

bility, which affect the system efficiency. The algorithm

used a reliability-aware technique that adjusted the

machines’ performance-to-power ratio (PPR) based on

their utilization. PPR measures how much work a machine
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can do with a given power. The algorithm ensured that the

cloud and fog machines operated at the optimal utilization

level to minimize energy consumption. They used a static

workflow scheduling method that assumes the workflow

structure and the resource availability are known in

advance.

Since the financial budget is essential for individuals and

enterprises utilizing cloud/fog resources, a new bi-objec-

tive optimization workflow scheduling algorithm was

developed by Shirvani and Noorian to cope with task

scheduling problems from a monetary and time costs per-

spective [43]. A new framework was proposed, which logs

all of the underlying resource failures and calculates how

the resource is reliable for task execution. Finally, the

Pareto set of solutions, which makes a trade-off between

makespan and reliability, is returned. Since the financial

budget is crucial for individuals and enterprises utilizing

cloud/fog resources, a new bi-objective optimization

workflow scheduling algorithm was developed by Shirvani

and Noorian to cope with task scheduling problems from a

monetary and time costs perspective [43].

As seen in the articles, researchers have discussed var-

ious parameters such as performance, time, cost, and

energy and have provided solutions based on heuristic

algorithms that, according to the dimensions of cloud and

fog-based systems, can Cover several parameters simulta-

neously and on a large scale. Another group of articles has

used the combination of mathematical models with other

intelligence-based solutions, which we will examine

further.

7.2 AI-based methods

Hybrid workflow scheduling is a method for running

complex applications with stream and batch processing

tasks on different systems. It tries to improve the perfor-

mance and cost of running hybrid workflows with addi-

tional and distributed resources at the edge and cloud

layers. Hybrid workflow scheduling has two main steps:

resource estimation and task scheduling. Resource esti-

mation entails gauging the requisite amount and type of

resources—such as CPU, memory, bandwidth, and bud-

get—necessary for executing a hybrid workflow effec-

tively. By capitalizing on the distinct advantages of stream

and batch processing, this method strives to achieve opti-

mal outcomes in low latency, high throughput, and scala-

bility. However, the dynamic nature of the edge cloud

environment introduces fresh challenges and trade-offs in

both resource estimation and task scheduling, including

uncertainties, heterogeneity, and dynamism, which neces-

sitate careful consideration [44]. Qin et al. [45] proposed a

technique based on the Fruit Fly optimization algorithm

(FOA) for scheduling workflows in cloud computing,

where the goal is to optimize both the time and the cost of

the workflow execution. FOA uses a cluster strategy based

on reference points to divide the solutions into groups.

FOA also uses some operators designed for the specific

workflow scheduling problem. To create the initial solu-

tions, FOA uses three heuristics, one of which is based on a

non-linear weight vector to improve the distribution of the

solutions. To improve the solutions, FOA uses three

neighbourhood search operators that work together in the

smell-based foraging phase. FOA also uses the vision-

based foraging step, extending the solutions based on the

sub-groups and the crossover operator to speed up the

convergence. Li et al. [46] proposed an improved Farmland

Fertility algorithm by combining Mutation strategies and

Dynamic Objective strategies for scheduling workflows in

the cloud to optimize cost under deadline constraints.

Dynamic objective is a process that dynamically adjusts the

objectives’ weights, such as minimizing the execution

time, the cost, and the energy consumption. Dynamic

objectives can help the algorithm balance the trade-offs

among the objectives and achieve better performance.

They considered scalability and extensive experiments

were conducted on well-known scientific workflows with

different types and sizes. This method is not considered in

the detailed analysis of the complexity and scalability of

the proposed method, which may limit its applicability to

large-scale and dynamic cloud systems. From a complete

point of view, some have investigated user needs in

heterogeneous distributed environments instead of service

parameters. Mokni et al. [47] addressed the problem of

allocating workflow tasks to fog and cloud nodes, consid-

ering multiple objectives such as execution time, energy

consumption, cost, and reliability. The paper used an

adapted Genetic Algorithm for workflow scheduling in

minimal time. The article claims that the proposed method

can achieve better trade-offs among the objectives and

improve the quality of service for the users.

A hybrid task scheduling scheme based on an evolu-

tionary algorithm was proposed by Bay Wu et al. [48] to

solve workflow executions in edge and fog scenarios. They

modelled given projects as a directed acyclic graph (DAG)

and incorporated a partition operator to split DAG into an

ordered queue of tasks; then, it maps each of them to

appropriate available servers, guaranteeing the quality of

service.

Abualigahet al. [49] used the Dragonfly algorithm,

which mimics the swarming behaviours of dragonflies, to

solve optimization problems in IoT cloud computing

applications. This method decreases the makespan and

increases resource utilization. They focused on significant

data task scheduling. The authors improved the two fea-

tures in their heuristic method: mutation and dynamic

objective. Mutation is a process that randomly changes
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some parts of the technique, such as the number of tasks,

the rate of mixing, and the rate of switching. Mutation can

help the method avoid getting stuck in the wrong solutions

and find new solutions. Dynamic objective is a process that

changes the importance of the goals, such as minimizing

the time, the cost, and the energy use. Dynamic objectives

help the method balance the trade-offs among the goals and

achieve better performance. The type of workflow

scheduling used is a hybrid approach that combines a bio-

inspired optimization algorithm and a local search tech-

nique. The proposed method, named MHDA, optimized the

energy consumption and the makespan of the workflow

tasks while meeting the deadline constraint.

Mollajafari et al. [46] worked on time and performance

parameters and optimized the cost by modelling cloud

features and the time and cost of data storage. The paper by

Mohammadzadeh et al. [50] presented a new HDSOS-

GOA method that uses a hybrid chaotic algorithm to

schedule tasks in fog computing environments. HDSOS-

GOA uses Symbiotic Organisms Search (SOS) and

Grasshopper Optimization Algorithm (GOA) algorithms

and chooses between them based on the probability com-

puted by the learning automata. The paper aimed to min-

imize the makespan, cost, and energy consumption of

scientific workflows on fog nodes and cloud servers. The

paper also uses the Dynamic voltage and frequency scaling

(DVFS) approach to lower energy consumption. The

HDSOS-GOA algorithm assigns the tasks to the most

appropriate VMs and selects the optimal DVFS-level VMs.

The paper’s goal is to reduce the energy consumption and

the scheduling time of workflow scheduling. The paper

also reduces the latency and bandwidth consumption by

using the fog nodes near the end-users. The article by Singh

et al. [51] presented a hybrid GA-modified PSO method for

resource assignment. The technique aims to minimize the

makespan, cost, and energy consumption of tasks that

depend on each other on various resources in cloud-fog

computing settings. The method uses slow VMs to prevent

the job execution from being delayed. The technique uses

the same weights for the makespan, energy consumption,

and execution cost in the fitness function to achieve the

goal. The paper shows that the proposed method is better

than other existing algorithms regarding the makespan,

cost, and energy consumption of running scientific work-

flows on cloud and fog resources. The paper [52] intro-

duced a hybrid multi-criteria decision model that addresses

the reliability challenge mentioned in articles [53] and [50].

The model enhances the timing reliability and optimizes

the time-related parameters of the workflow execution. The

model can adjust to the changes and uncertainties of cloud-

fog resources and workflow applications.

Metaheuristic algorithms, including genetic algorithms

and simulated annealing, provide robust solutions for

tackling intricate optimization dilemmas. Unlike exact

approaches guaranteeing optimal outcomes but struggling

with extensive solution spaces, meta-heuristics efficiently

explore these expansive domains, particularly suitable for

NP-hard problems or situations with incomplete data.

These algorithms, such as genetic algorithms, simulated

annealing, and ant colony optimization, are aptly suited for

NP-hard scheduling predicaments with incomplete infor-

mation. Although they do not assure global optimality,

their minimal time complexity makes them applicable for

real-time endeavours with adaptable constraints. Demon-

strating efficacy in workflow scheduling, particularly in

multi-objective contexts, they adeptly navigate intricate

Pareto fronts by intelligently sampling vast solution spaces.

However, while predominantly employed in single-objec-

tive workflow scheduling, the substantial potential exists to

be harnessed for reconciling trade-offs and constraints in

cloud-centric workflow environments, furnishing near-op-

timal outcomes at manageable computational costs [4, 54].

Some hybrid methods have been presented on cost and

energy parameters, and their superiority over using a

specific heuristic algorithm is to improve various parame-

ters at the system level and provide a universal solution.

Bacanin et al. [55] proposed a method for scheduling

workflows in cloud computing, where the goal is to opti-

mize the time of the workflow execution. The process uses

an improved firefly algorithm, a technique that imitates the

behaviour of fireflies, where each individual (firefly) moves

and communicates with others to find the best solution. The

paper claims that the improved firefly algorithm can solve

the problems of the original firefly algorithm, such as slow

convergence and early convergence, by using a mutation

operator and a population renewal mechanism. The paper

also uses a task clustering technique, which divides the

tasks into groups based on their data dependencies and

communication costs to lower the data transfer time and the

network bandwidth consumption. The paper introduces a

new way to represent the solutions using fireflies, where

each firefly shows the type and the number of cloud and

edge resources needed by each task group. The paper also

explains a decoding procedure that transforms a firefly into

a scheduling solution, where the tasks are allocated to the

resources based on their priorities and availability. The

paper also uses a repair method to correct the invalid

solutions that may happen because of the randomness of

the firefly algorithm. The article shows that the technique

can lower the workflow execution time by selecting the

most appropriate cloud and edge resources for each task

group and using the unused periods on the resources to

increase resource utilization.

As mentioned earlier, reliable service delivery is vital

for providers and requesters. The reliability of service

delivery is a reputational parameter for service providers
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and simultaneously makes service requesters highly adhere

to it because their business continuity strongly depends on

reliable execution. To this end, Asghari et al. proposed a

bi-objective workflow scheduling algorithm based on a

cuckoo search optimization algorithm [56]. A new frame-

work was proposed, which logs all of the underlying

resource failures and calculates how the resource is reliable

for task execution. Finally, the Pareto set of solutions,

which makes a trade-off between makespan and reliability,

is returned.

Some researchers worked on time parameters for

workflow prioritization and allocation of resources. Hafsi

et al. [57] have gone for a combined solution using a

genetic algorithm and particle swarm optimization. The

main advantage of this method is its high scalability in

terms of demand and time-constrained problems, which is

also considered in simulation. They used an accurate

number coding based on a random key with a limited value

range, which can improve the search efficiency and avoid

premature convergence. Dynamic adaptive decoding can

decode the actual number coding into a feasible scheduling

solution using an active mapping table that can adjust to

the changing cloud environment.

Xie et al. [58] worked on cost management and sug-

gested a new genetic algorithm for cloud workflow

scheduling to assign available cloud resources based on

performance and cost optimization. They designed an

iterative backward scheduler that can improve the solution

by repeatedly scheduling workflow tasks while considering

resource availability and task dependency. This method has

a complete solution space. It can also efficiently search the

entire solution space and find the optimal solution in the-

ory. This method has proper scalability. It can also adapt

and improve the environmental variables by developing

dynamically.

Similarly, article [59] proposed a method called CEPO

for scheduling resources in cloud computing, where the

goal is to optimize the cloud system’s performance and

cost. CEPO combines two techniques: cultural algorithm

(CA) and emperor penguin optimizer (EPO). CA is a

technique that uses shared memory to store and update the

best solutions. EPO is a technique that simulates the

behaviour of emperor penguins, where each penguin moves

and communicates with others to find the best solution. The

paper claims that using CA can improve the efficiency of

EPO by enhancing its exploitation ability.

Systems operating within hybrid cloud-edge environ-

ments necessitate tailored structures and strategies to

address each layer’s unique demands and capabilities. A

cloud-edge environment seamlessly integrates resources

from cloud and edge computing domains, with the cloud

offering centralized, scalable services and the edge pro-

viding distributed, low-latency services. Within edge cloud

systems, heterogeneous resources span across edge and

cloud layers, boasting diverse capabilities and cost struc-

tures. Fog computing, as a subset of edge cloud systems,

leverages fog nodes and intermediate servers to furnish

computation and storage services to end devices, optimiz-

ing proximity and performance in a study by Khaledian

et al.

In a study by Khaledian et al. [60], a novel approach was

proposed to schedule complex applications with multiple

tasks within edge cloud systems to enhance performance

and cost-effectiveness. This approach, rooted in the krill

herd algorithm—a meta-heuristic algorithm inspired by the

collective behaviour of krill swarms—aims to optimize

workflow scheduling in fog-cloud environments. More-

over, integrating dynamic voltage and frequency scaling

(DVFS) techniques further enhances energy efficiency by

adjusting voltage and frequency levels in fog nodes. This

method has two main steps: population initialization and

individual improvement. Population initialization creates

an excellent initial population by using the level informa-

tion of the workflow tasks and some heuristic algorithms,

such as the dynamic heterogeneous earliest finish time

(DHEFT). Individual improvement is improving the indi-

viduals by using the krill herd algorithm, which can search

the search space and find the optimal or near-optimal

solutions. The authors enhanced the individual solutions by

using some novel strategies for personal improvement and

local search, such as task swapping and task insertion

operators, which can balance the workload among the fog

nodes and reduce the communication overhead among the

workflow tasks and the simulated annealing algorithm,

which can explore the neighbourhood solutions and escape

from local optima.

Kamanga et al. [61] developed a scheduling algorithm

for cost-time minimization, and they specified CPU fre-

quency for each task. With this scheduling, using the

lowest CPU frequency may not be cost-effective since

increasing the execution time may raise the cost, too [19].

They made sure that the CPU frequency selection for each

activity is not based just on cost or execution time but also

allows for flexibility in both execution time and cost. In

[61], a method is also proposed to allocate resources sim-

ilarly. The proposed method selects the computing resource

and CPU speed according to the highest performance score

calculated by Manhattan and Euclidean distance. Paper

[62] has taken a step ahead of [63] and has improved the

use of data centers with a more comprehensive view of user

requirements. The paper [62] proposed a new method

called PBMO-DALO, which uses an ant lion optimization

algorithm to schedule workflow tasks in cloud data centers.

Workflow tasks depend on each other and have different

needs and limits, such as how long they take, how much

they cost, and how well they perform. The method aims to
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reduce the time and energy used for the workflow execu-

tion simultaneously. The method uses a new way of coding

and moving the ants and ant lions, inspired by nature. The

method also compares and chooses the best solutions based

on multiple goals, such as time, cost, and energy use. The

method can find solutions that offer different trade-offs

among the objectives. The method can also change the

importance of the goals based on the situation and the user

preference. The paper tested the method on different

workflow applications and showed that the method per-

formed better than other methods in terms of time, cost,

energy use, and quality of service.

Another group has dealt with more parameters and

established a trade-off point between the parameters. The

paper [64] introduced a fog computing resource manage-

ment (FRM) model with three primary solutions. First, it

computes the resource availability based on the average

execution time of each task. Second, it improves the load

balancing by using a hybrid method that mixes the multi-

agent load balancing algorithm and the throttled load bal-

ancing algorithm. Third, it schedules the tasks based on

priority, resource availability, and load balancing. The

FRM model has three levels of processing: personal agents

(Pas), fog node agents (FNAs), and cloud. It also has two

levels of control: master private agents (MPAs) and master

fog node agents (MFNAs).

The FRM model uses four parameters: task initial pri-

ority, task assignment to the fog node, resource availability

calculation in the fog computing tier, and task migration to

the cloud. This method can deal with real-time and emer-

gency healthcare applications with different priorities and

deadlines. It can distribute the workload and the resource

utilization among fog nodes and cloud servers. Javaheri

et al. [65] proposed a 3-tier scheduling scheme based on

the Hidden Markov Model (HMM) model for managing

scientific workflows in multi-fog computing environments,

in which a broker node in the IoT layer chooses the suit-

able fogs based on the availability of fog computing pro-

viders to submit the IoT workflows. The authors improved

the performance and cost of running complex applications

on multi-fog systems using an enhanced discrete Harris

hawk optimization algorithm (IDHHO). This meta-heuris-

tic algorithm imitates the hunting behaviour of Harris

hawks. IDHHO uses a discrete encoding scheme based on

the position and velocity of the hawks, which can enhance

search efficiency and avoid premature convergence.

Qiu et al. [66] suggested a method for scheduling tasks

on edge cloud systems that need to optimize both the

execution time and the energy consumption simultane-

ously, which is a kind of evolutionary algorithm that uses

multiple sub-populations with different genetic operators to

search for the best solutions. This paper divided the pop-

ulation into three groups: superior, ordinary, and inferior,

which are based on the quality of the individuals. The

superior group uses a genetic operator based on the supe-

rior individuals’ longest common subsequence (LCS),

which can keep some good gene blocks and speed up the

convergence. The ordinary group uses the usual genetic

operators, such as crossover and mutation, which can

preserve the diversity and balance of the population. The

inferior group uses a genetic operator based on the LCS of

the flawed individuals, which can remove some lousy gene

blocks and help the individuals escape from local optima.

The paper also designed a dynamic mechanism that can

change the size and composition of the groups according to

the fitness landscape and the generation number. In each

generation, the non-dominated sorting and crowding dis-

tance ranking methods are used to evaluate the quality of

each individual. This method can change the size and

composition of the groups according to the fitness land-

scape and the generation number by using a dynamic

mechanism, which can adapt to the changing and uncertain

environment of edge cloud systems.

On the other hand, it can need help to balance the trade-

offs between performance and cost, which may lead to

conflicting and inconsistent objectives and preferences.

Wang et al. [67] proposed a method for scheduling work-

flows in cloud computing, where the goal is to optimize the

execution cost of the workflow while respecting a deadline.

The technique combines particle swarm optimization

(PSO) and idle time slot-aware rules. The paper claims that

using these rules can increase resource utilization and save

the execution cost of the workflow. The paper introduced a

new way to represent the solutions using particles, where

each particle shows the type of cloud resource needed by

each task and the order of functions. The paper also

explains a decoding procedure that transforms a particle

into a scheduling solution using idle time slot-aware rules.

The paper also used a repair method to correct the invalid

order of tasks that may happen because of the randomness

of PSO. The paper showed that the technique can find

reasonable solutions using PSO, which can search an ample

space and communicate with other particles to find the best

solution. The paper also shows that the method may not

work well for workflows with more than one objective or

constraint, such as energy consumption, reliability, secu-

rity, etc., as it only focuses on the cost and the deadline as

the primary objective and discretion. Article [30], in

determining the objectives of the article, directly mentions

both the response time management in the fog and the cost

optimization in the allocated cloud elastic resources, as

well as the proposed approach as a multi-agent approach in

the relevant environment. It is simulated to the Internet of

Things. In this approach, reliability, cost, and availability

are also covered according to the defined parameters.

However, it is necessary to complete some of them
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according to user needs in the natural environment. As seen

in the review of these articles, a group of papers has pre-

sented models to improve important service parameters,

and another group has used intelligence-based solutions to

adapt to mixed environments.

The improved Owl search algorithm (OSAM) [68] is a

method for scheduling workflows in cloud computing,

where the goal is to minimize the makespan (the total

execution time) of the workflow while respecting the

budget limit. OSAM uses a new mutation strategy to

increase the diversity of the solutions and avoid getting

stuck in local optima. OSAM also uses a population update

mechanism that adapts the step parameter, b, according to

the current best solution (CBS) and the number of itera-

tions. This helps OSAM to converge faster and find the

near-optimal solution. However, OSAM only considers one

objective (makespan) and one constraint (budget) in a

single cloud environment.

Li et al. [69] proposed a new method called PSO ?

LOA, which combines two optimization techniques: par-

ticle swarm optimization (PSO) and lion optimization

algorithm (LOA). The method reduces the time needed to

execute workflow tasks in cloud computing while staying

within a budget limit. The process uses several features,

such as a distance-based particle repositioning algorithm,

an adaptive search strategy, and a balance between

exploration and exploitation, to improve the efficiency and

effectiveness of the optimization process. The paper tested

the method on large-scale workflow applications and

showed that the method performed better than previous

methods regarding solution quality and budget constraints.

To increase efficiency, the authors in [47] have gone to

the grey wolf algorithm and particle swarm optimization to

optimize the time parameters and have faster convergence.

In [70], Shirvani has considered a different solution from

other researchers, which uses parallel processing to opti-

mize the time parameters. This research has presented a

hybrid optimization algorithm based on particle swarm

optimization, which, like [47] and faster convergence with

parallel processing, also improves the system’s overall

performance.

Javanmardi et al. [71] suggested a method for schedul-

ing complex applications on IoT systems that need to

optimize both the security and the performance simulta-

neously, which uses fuzzy-based anomaly detection algo-

rithms to find and block the source of attacks from

malicious requestors. They also used an NSGA-III sched-

uler optimization method to balance the load and the delay

for resource management. The paper also considers the

security aspect of the scheduling problem, as IoT devices

and fog nodes may be exposed to various attacks, such as

data tampering, eavesdropping, or denial of service. This

method has four main steps: task clustering, task mapping,

task scheduling, and task migration. Task clustering is the

step of grouping the tasks of an application into clusters

based on their similarity and dependency. Task mapping

assigns the clusters to the fog nodes based on their resource

requirements and security levels—task scheduling orders

tasks within each cluster based on their priority and

dependency. Task migration is moving tasks from one fog

node to another in case of resource shortage or security

breach. This method can improve the performance and cost

of running complex applications on SDN-based IoT-Fog

networks by using a secure workflow scheduling method,

which is a technique that assigns and orders the tasks of an

application to the available resources while satisfying the

quality-of-service constraints, such as deadline, through-

put, and reliability.

A group of articles have addressed the parameters that

have been paid attention to in less research. The approach

of the study [72] is slightly different from other articles,

and by using the combination of the optimal algorithm of

the Sari particle swarm and also the ant-lion algorithms, it

has been able to manage time parameters and solve the

problem of privacy and security, which is one of the

required quality parameters. Services, tasks, and workflows

are introduced, and a data encryption technique has been

applied to provide a more secure framework. However, it

has been used for austere cloud environments, and the

parameters related to multi-cloud environments should also

be included.

Machine learning (ML), especially reinforcement

learning and deep reinforcement learning, presents

promising capabilities for cloud workflow scheduling. For

instance, Wang et al. in [73] proposed a deep reinforcement

learning-based optimization scheduling algorithm for

solving workflow scheduling problems with the aim of

load-balancing and reducing response in edge and fog

platforms. Since miscellaneous IoT applications request

low-time computing resources, their load is forwarded

toward edge and fog servers. To have load balance and

minimum response time, the deep learning-based rein-

forcement algorithm was extended to have adaptive and

flexible task scheduling commensurate with the underlying

heterogeneous distributed platform. Deep Q-learning

empowers scheduling agents to glean effective strategies

from past workflow executions and resource utilization

patterns [74]. ML methods aid in optimizing objectives like

time and cost while adhering to constraints concerning

budget, deadlines, and reliability.

Applying ML to scheduling poses challenges such as

sample complexity, hyperparameter calibration, and

managing sizeable discrete action spaces. Integrating meta-

heuristics and ML with simulation-based training can

mitigate these hurdles. ML holds substantial promise in
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facilitating adaptive, resilient scheduling while comple-

menting human expertise.

Reducing energy consumption is one way to lower cloud

providers’ costs. Intelligent task-scheduling algorithms can

help to assign user-deployed jobs to servers in an energy-

efficient way. Hunter Plus [53] is a new CNN-based

resource scheduling method that builds on the existing

GGCN scheduler (HUNTER) and develops a new CNN

scheduling model. The authors aimed to optimize make-

span, cost, energy consumption, and throughput. The CNN

model also exhibits stable behaviour by evenly and con-

sistently allocating and migrating tasks. It can handle large-

scale and complex task-scheduling problems with multiple

objectives and constraints. In addition to energy, Saif et al.

[75] have also worked on delay, and similar to the previous

paper, it has used a multi-objective function to cover users’

and service needs, and it can cover constraints at a large-

scale level.

A new method called WDDQN-RL was introduced by

Li et al. [76] to schedule many workflows in the cloud

while reducing both the time and the cost. The technique

uses a WDDQN, a weighted version of a double deep

Q-network, to avoid errors in estimating the value of each

action that can happen in DQN and DDQN. The method

also uses pointer networks to deal with different sizes of

task sets that can be chosen and a dynamic sensing

mechanism to change the focus on each objective

depending on the current situation. The method can correct

the errors in estimating the value of each action that can

happen in DQN and DDQN, making the learning process

more stable and accurate.

Chen et al. [77] suggested a method for scheduling

different types of workflows in cloud computing using deep

reinforcement learning. This method can deal with the

problem of poor service quality caused by the lack of

coordination among different types of workflows and the

interruption of task execution in cloud computing situa-

tions. It can adjust to edge cloud systems’ changing and

uncertain environment by using deep reinforcement learn-

ing, which can learn from online feedback and update its

policy accordingly. It can weigh the trade-offs between

performance and cost using a multi-objective reward

function, which considers the execution time, energy con-

sumption, and monetary cost of different types of work-

flows. It can manage the heterogeneity and diversity of

workflows and resources using a collaborative scheduling

strategy. It splits the different workflows into sub-work-

flows and assigns them to various agents, each in charge of

scheduling a sub-workflow on a subset of resources. This

method has different steps. First, it extracts the structure

and time sequence features for the dynamic scheduling

process and builds a reasonable feature set to support the

scheduling decision. Second, it designs a time-step

adaptive scheduling mechanism to reduce redundant

information in the scheduling process and enables the agent

to achieve efficient learning. In addition, it uses equilib-

rium, priority, and preference scheduling strategies, a

compound reward mechanism that combines immediate

and delayed rewards, and a hybrid action that switches

between scheduling and waiting to harmonize the agent’s

learning objectives and actual scheduling requirements.

Parameter-based approaches typically denote approa-

ches where parameters or mathematical relationships

characterize the problem. Mathematical methods, such as

linear programming, address problems through mathemat-

ical relationships or optimization, while parametric meth-

ods involve managing or improving a specific parameter,

such as energy or cost. They often solve the problem and

the desired parameter without relying on a specific algo-

rithm. We have clarified that articles considering mathe-

matical methods and parameter-based approaches fall

under the umbrella of parametric methods.

Mathematical optimization, also referred to as pro-

gramming (MP) and mentioned as parametric modelling,

serves as a valuable tool for tackling intricate problems

involving an objective function and mathematical con-

straints. This approach simplifies decision-making pro-

cesses by helping determine the best choice from a range of

options. Applied mathematics plays a role in this field,

enabling individuals to identify the optimal solution within

given constraints. Mathematical programming finds appli-

cation, in addressing planning and scheduling challenges

optimizing resource utilization efficiently to achieve

specific objectives within reasonable time frames. Various

techniques, including Integer Linear Programming (ILP)

and Mixed Integer Linear Programming (MILP), are

employed to achieve these goals [78, 79].

Chakravarthi et al. [80] proposed a method called

NRBWS for scheduling workflows in cloud computing,

where the goal is to optimize the reliability and the time of

the workflow execution under a given budget limit. A

workflow is a set of tasks that depend on each other and

must be executed in a specific order. NRBWS uses a–max

normalization process and a calculation of the expected

reasonable budget (erb) to choose the best resource for

each task. NRBWS also considers the reliability of the

resources and the tasks and assigns the tasks to the most

reliable resources with the shortest finish time within the

budget. Cost parameters must be extended to different

parameters like energy consumption.

Xie et al. [81] proposed a new two-stage multi-popula-

tion genetic algorithm with heuristics for workflow

scheduling. This study presented a mathematical model for

workflow scheduling in Heterogeneous Distributed Com-

puting Environments, a complete, solvable, and extensible

integer programming problem with constraints on the order
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and the resources of the tasks. This algorithm uses a two-

stage multi-population coevolution method with novel

techniques for initializing, operating, decoding, and

improving the populations. The algorithm is applied to

various situations based on accurate and random workflows

to test its effectiveness. This study only considers the static

scheduling of workflow, where the exact task execution

time and communication time for any valid task-resource

assignment are known before scheduling.

By presenting a multi-objective algorithm, Hussain et al.

[63] proposed a method for scheduling workflow tasks to

different servers in cloud data centers, considering cost,

time, and energy consumption challenges. The DEWS

method has four steps: ordering the tasks, finding the best

data center, adjusting the task order, and finding the best

virtual machine. The method also uses a technique called

DVFS, which can adjust the voltage and frequency of the

servers to reduce the energy cost. The technique considers

data centers that are located in different places.

Xu et al. [82] presented a new problem model and

simulator for Dynamic Workflow Scheduling in Fog

Computing (DWSFC). The authors proposed a new Multi-

Tree Genetic Programming (MTGP) method that can

generate scheduling heuristics and make real-time deci-

sions on different decision points. The MTGP method with

multiple trees can deal with both routing and sequencing

decision points at the same time. However, this method

may not account for the reliability and security issues of the

fog nodes, which may impact the quality of service.

Table 3 below is a general review of the articles studied

in this article, and in the discussion section, we will discuss

their statistics and answer the research questions.

8 Discussions

This section comprises an analytical discussion of the

existing approaches to workflow scheduling in cloud and

fog environments. The analytical reports are based on our

questions:

RQ1 How do the different methods of scheduling work-

flows in a fog-cloud environment work, and what are their

categories?

Figure 9 shows a statistical view of the work scheduling

approaches based on our taxonomy. We proposed two

work scheduling approaches classification: heuristic

workflow scheduling and hybrid workflow scheduling.

Hybrid workflow scheduling has the highest percentage of

the scheduling approaches, with 75% based on selected

papers analyses. As expected, given that the articles of

recent years have been selected, the use of artificial

intelligence methods in research is more. In response to the

next question, techniques and algorithms are categorized.

RQ2 Which of the various workflow scheduling algo-

rithms and datasets that have been suggested has been more

popular?

In Figure 10, we present a method distribution derived

from current papers focused on workflow scheduling in

cloud and fog environments. Through a meta-analysis of 14

research studies, it was observed that authors frequently

utilize a blend of diverse heuristic algorithms to address

crucial parameters in resource allocation and workflow

planning. The analysis provides insights into the algorithms

mentioned in the examined articles, revealing a diverse

landscape. Algorithms are mentioned in the analysis writ-

ten for the articles.

Figure 11 depicts the composition of workflow

scheduling datasets. It is divided into two categories:

‘‘Real’’ and ‘‘Random’’. Real datasets account for a larger

share than randomly selected datasets, constituting 55.1%

of the pie chart.

RQ3 What tools have been employed to simulate and

implement the methods that have been studied?

In our selection process, we specifically focused on

articles that addressed distributed environments across

various layers, including fog, cloud, and edge computing.

This deliberate selection allowed us to analyze the papers

based on the environments in which they were evaluated,

thus identifying both the challenges associated with real-

time implementation and making the simulation environ-

ment and tools more transparent for future solutions.

Figure 12 provides a detailed illustration of the tools

utilized for simulation and implementation across different

environments. Through this analysis, we aim to shed light

on the methodologies and technologies employed in eval-

uating the effectiveness and feasibility of workflow

scheduling methods in diverse computing environments.

Based on Figure 13, it is evident that 29% of the method

simulations were conducted using the WorkflowSim tool.

WorkflowSim is designed explicitly for simulating work-

flows in distributed environments and is built as an

extension of CloudSim, a well-known cloud computing

simulation tool. Additionally, 25% of the papers utilized

the CloudSim tool for simulation purposes, although

specific details were not provided.

Table 3 provides a comprehensive breakdown of the

simulation tools used in each article, allowing for a detailed

comparison of the tools employed across different studies.

This information enhances transparency and facilitates a

deeper understanding of the methodologies adopted in the

simulation and implementation of workflow scheduling

methods in various computing environments.
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Table 3 General analysis of selected papers

Papers Advantage Disadvantage Simulation tools Environment

[56] Worked on multi-cloud methods Other distributed environments must be

considered

CloudSim Cloud

[43] A multi-objective method is designed for

performance and cost

Reliability and security must be considered CloudSim Cloud

[57] Worked on scalability and time-constraint

problems

Complexity WorkflowSim in

CloudSim

Cloud

[81] Cover heterogeneous distributed computing

environments

Complexity Not considered Cloud-Fog

(distributed)

[66] By using dynamic methodology, it can adapt to

the changing and uncertain environment

They must identify the trade-off between

performance and cost

CloudSim Cloud

[71] Resource allocation optimization, security

improvement

Computational overhead Not considered Fog in IoT

[58] The iterative forward–backward scheduling can

further improve the individual by iteratively

scheduling the workflow tasks from the

beginning to the end and from the back to the

beginning while considering the resource

availability and the task dependency

They used a GA-based algorithm but in static

workflow scheduling

C ? ? Cloud

[65] Search efficiency improvement and the

communication overhead optimization

High complexity IFogSim Fog in IoT

[83] They proposed scheduling time constrained

Workflows on hybrid Fog/Cloud environments

Workflow scalability must be considered Velociraptor

simulator-

Python

Fog/Cloud

[44] Worked on scalable workflow scheduling The cost must be considered CloudSim Edge cloud

[60] Worked on Edge and Cloud simultaneously Complexity and overhead WorkflowSim in

CloudSim

Edge cloud

[48] Focused on energy efficiency in different

workflow scheduling

The cost must be considered for cloud and fog

servers

CloudSim Fog in IoT

[73] Complex and stochastic optimization for

workflow scheduling

Complexity for computation Python Fog-Cloud

[47] They covered different characteristics of

heterogeneous environments

Real-time workflow scheduling and user goals

must be considered

WorkflowSim in

CloudSim

Fog-cloud

[42] This research has performance and energy

improvement simultaneously

Communication cost and delay between the fog

and cloud nodes must be considered for time

parameters

IFogSim Fog-cloud

[46] They used a dynamic multi-objective algorithm The paper assumes that the cloud resources are

homogeneous and have fixed prices and

capacities. This assumption may not be

realistic in practice, as cloud resources vary in

their types, prices, and availability

WorkflowSim in

CloudSim and

Java

Cloud

[40] Dynamic objectives can help the algorithm

balance the trade-offs among the goals and

achieve better performance

The paper does not consider the communication

cost and delay between the container-based

tasks and the cloud-edge resources, which

may affect the performance and reliability of

the workflow execution

Python Edge cloud

[63] A heuristic approach that considers both the

energy consumption and the deadline of the

workflow tasks

Fixed execution time and resource

requirements are assumed for workflows

Java Cloud

[49] They designed a dynamic objective process to

help the algorithm balance the trade-offs

among the objectives and achieve better

performance

Cost and scalability must be considered CloudSim Cloud in IoT

[69] Time parameters are minimized The cost must be considered Java Cloud

[46] Cost optimization based on environmental

parameters modeling

Reliability and energy consumption must be

considered

MATLAB Cloud
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Table 3 (continued)

Papers Advantage Disadvantage Simulation tools Environment

[47] Faster convergence Energy consumption must be considered WorkflowSim in

CloudSim

Cloud

[70] Parallel workflow scheduling Cost optimization must be considered WorkflowSim in

CloudSim

Cloud-Fog

(distributed)

[72] The multi-objective method with reliability

consideration

Multi-cloud parameters must be added CloudSim Cloud

[30] Multi-objective and multi-layer coverage Some Quality of Services must be evaluated in

real-world scenarios

WorkflowSim in

CloudSim

Cloud-Fog

(IoT)

[62] Better convergence Complexity on a large scale in real-time

scenarios

CloudSim Cloud

[59] Work on different sizes of workflows The cost must be considered in the evaluation TensorFlow

framework

Cloud

[41] Multi-objective based on cost, energy

consumption, and deadline constraint

Complexity in real data must be considered and

evaluated

Java Cloud

[68] A new heuristic method is used for cost

management

It is a single objective method for a single cloud

environment

WorkflowSim in

CloudSim

Cloud

[45] The multi-objective method is designed based

on resource allocation requirements in a

distributed system

Hybrid and multiple clouds are not covered in

the real environment

Java Cloud

[67] Scalability and workflow variety coverage Computation costs must be considered CloudSim Cloud

[80] It uses a hybrid approach to manage cost and

reliability. It improved QoS in different areas

The cost factor must be considered CloudSim Cloud

[59] Different parameters of cost are considered The fault must be considered based on the

resource allocation method in future work.

Complexity of simulation

CloudSim Cloud

[61] Multi-objective model for different

requirements

Complexity in simulation Java Cloud

[55] Resource utilization improvement It only focused on the makespan and the cost CloudSim and

MATLAB

Edge cloud

[61] A method for complex workflow scheduling Scalability must be considered WorkflowSim Cloud

[28] Prioritizing the tasks based on different

parameters

Computational time and resources must be

considered

CloudSim Cloud

[53] Multiple object functions based on different

requirements of users

Scalability and reliability must be considered COSCO

framework

Fog-cloud

[75] Delay constraints added to energy management

for cost-aware workflow scheduling

The other parameters that are related to cost

must be considered

MATLAB Fog-cloud

[82] Multi-objective are formulated Complexity must be considered WorkflowSim Fog-cloud

[77] Optimizes multi-objective scheduling

makespan, cost, fairness, and continuity

Potentially limited to smaller workflows and

static environments

Python Cloud

[50] Handling large-scale and complex task

scheduling problems with multiple objectives

and constraints

Security and reliability must be considered iFogSim-

CloudSim

Fog-cloud

[51] Reducing the latency and bandwidth

consumption

Several data centers must be considered WorkflowSim Fog-Cloud

[52] Handling real-time interactive services with

time constraints and reliability requirements

Cost and energy consumption must be

considered

iFogSim-

CloudSim

Fog-Cloud

[36] Handling large-scale and complex task-

scheduling problems

Reliability and security issues must be

considered

WorkflowSim Fog-Cloud

[37] It is multi-objective formulated for large-scale

tasks

Load balancing must be considered SMO-

WorkflowSim

Fog

[64] Performance and availability for emergency

services

Cost and energy consumption must be

considered

iFogSim Fog

[2] Predictive energy-efficient scheduling and

optimized workflow efficiency

Implementation complexity, computational

overhead, and limited validation scope

iFogSim,

MATLAB

Fog
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Table 3 (continued)

Papers Advantage Disadvantage Simulation tools Environment

[84] Efficient workflow scheduling outperforms

existing methods

Limited scalability discussion; potential

complexity in diverse scenarios

Python Fog-Cloud

[85] Enhanced adaptability and efficient resource

utilization

The potential trade-off between objectives

requires careful consideration of makespan

and resource utilization

CloudSim Cloud

[86] Optimizing execution time and communication

costs

Limited empirical validation and comparison,

potentially restricting generalizability

none Cloud

[87] Optimizes real-time cloud workflow scheduling,

surpassing existing algorithms in response

time, success rate, and cost

Limited scalability to large-scale cloud

environments and potential

underrepresentation of overall performance

Python Cloud

[88] Proposes an effective deadline-constrained and

cost-efficient cloud workflow scheduling

algorithm

Lacks evaluation on large-scale CloudSim Cloud

[89] minimize makespan, execution time, energy

consumption, and cost

Unclear generalizability and need for more

discussion on security/reliability

FogBus2 Cloud

[90] Multi-objective algorithm for cloud workflow

scheduling, effectively balancing user

preferences with conflicting interests

Limited to single workflows and cloud

environments, needing more scalability for

handling multiple workflows or cloud

scenarios

WorkflowSim Cloud

[91] Highly effective and robust algorithm that

minimizes costs for the considered problem

Limited scope and scalability WorkflowSim Cloud

[92] Optimizes workflow scheduling for both users

and providers in Fog-Cloud using distributed

agents and fuzzy logic

It lacks real-time and QoS sensitivity and does

not offer user-specific prioritization

WorkflowSim,

Fuzzy logic

toolbox

Fog-Cloud

[93] Achieves better results in convergence,

diversity, and critical metrics like makespan,

cost, and energy

Increased execution time and complexity MATLAB Fog

[94] Faster convergence, better accuracy, and

Energy-efficient scheduling for real-world

workflows

Tuning-hungry, potentially limited to specific

workflows, needs more proof against other

hybrids

IoTSim-Osmosis IoT-Fog

[95] Balances energy consumption and task

completion time

High complexity for dense workflows WorkflowSim Multi-cloud

[96] achieving better results for makespan, cost,

energy, and load balancing

Higher computational cost fog workflow sim Cloud

[97] Reduces cost under deadline constraints and

adapts to cloud environment fluctuations

Higher scheduling time MATLAB Fog-Cloud

[98] Reduces execution time and cost Limited in considering load balancing, fault

tolerance, diverse workflow types, and user

satisfaction

FogWorkflowSim Fog-Cloud

[99] Efficient cloud workflow scheduling with

reduced cost and execution time,

outperforming existing methods on real-world

datasets

Limited to addressing data center power

consumption and geographically distributed

environments

Java Cloud

[100] Significant performance improvement in

response time, resource utilization, and web

service combination

Limited exploration of effectiveness for

different workflow sizes

WorkflowSim Cloud

[101] efficient workflow scheduling with minimized

task execution time

Unclear how it handles real-world dynamic

uncertainties

WorkflowSim,

CloudSim

Cloud

[17] Energy efficiency and fast execution Needs reliability considerations D-JStorm Cloud

[3] Better performance in terms of makespan and

energy consumption

high complexity CloudSim Cloud

[102] Improves efficiency and solution quality Limited testing, security considerations, and

future work plans could be more specific

iFogSim Fog

[103] Reduces energy consumption and cost through

task clustering, deadline constraints and

DVFS for energy efficiency

Relies on accurate execution time estimation

and may not consider all relevant parameters

in real-world environments

CloudSim Cloud
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RQ4 What parameters are used to assess the performance

of workflow scheduling methods in a fog-cloud

environment?

Table 4 categorizes the essential parameters for

scheduling workflows and tasks as outlined in each article,

providing a comprehensive overview of the factors con-

sidered in workflow scheduling methodologies. Mean-

while, Fig. 14 presents the percentage of parameter usage

across all the analyzed articles, shedding light on the

relative importance of each parameter in the context of

workflow scheduling.

Utilizing various cloud and fog-based architectures in

innovative city applications underscores the critical

importance of these architectures in serving communities

effectively. Furthermore, the inherent resource hetero-

geneity emphasizes the significance of parameters related

Fig. 9 Method types of distribution based on taxonomy

Fig. 10 Algorithms and approaches in selected paper

Table 3 (continued)

Papers Advantage Disadvantage Simulation tools Environment

[104] Multiple objectives and energy efficiency Computationally expensive CloudSim Cloud

[105] Achieves better cost and makespan through a

hybrid approach, balancing workload and

diverse population

Higher complexity WorkflowSim Cloud

[106] Optimizes execution time, cost, and energy

consumption

Lacks security and privacy considerations, and

effectiveness compared

WorkflowSim Cloud

[107] Improved performance, balanced

exploration/exploitation, real-world

applicability, and resource efficiency

Limited real-world testing, parameter tuning

challenge, specific problem focus, and limited

comparison to existing solutions

CloudSim Cloud

[108] Outperforms existing methods in energy, time,

and throughput, offering platform adaptability

and balanced multi-objective optimization

Lacks real-world validation and communication

cost consideration, potentially favoring

throughput reduction in specific cases

CloudSim Cloud

[109] Optimizes cost & time simultaneously for

improved resource utilization

Limitations in generalizability, complexity, and

specific drawbacks

CloudSim Cloud

[110] Uncertainty-aware optimization Limited applicability in constrained scenarios

and increased computational demands

Python Cloud

[111] Better cost, compilation time, and constraint

satisfaction

Slow convergence, limited evaluation on

diverse datasets and goals

WorkflowSim Cloud

[112] Reduces execution time and cost Prone to local optima, slow convergence, needs

improvement for complexity

Python Cloud
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to performance and makespan, reflecting their pivotal role

in optimizing workflow scheduling. Additionally, parame-

ters such as energy consumption and cost emerge as critical

considerations in method design, reflecting the imperative

to utilize resource capacities while minimizing operational

costs efficiently.

RQ5 What are the future challenges, open issues, and

research gaps for workflow scheduling in a fog-cloud

environment?

According to the studies, a group of challenges are

listed:

4 Resource heterogeneity: Workflow scheduling

faces difficulties when dealing with resource

heterogeneity, which refers to resources that

differ in processor speed, memory capacity,

bandwidth, cost, availability, and even struc-

tural differences depending on the architec-

tural layer. Because of this, assigning jobs to

resources in an optimal or nearly optimal way

that will meet workflow goals and restrictions

like decreasing makespan, cost, or energy

usage can be challenging. Due to resource

heterogeneity, scheduling algorithms must be

robust and flexible to manage the unpre-

dictability and fluctuation of resource avail-

ability and performance.

4 Resource dynamism: Workflow scheduling is

made more difficult by resource dynamism,

which implies that resources’ performance,

cost, and availability can all fluctuate over

time. Because of this, assigning jobs to

resources in an optimal or nearly optimal

way that will meet workflow goals and

restrictions like decreasing makespan, cost,

or energy usage can be challenging. Resource

dynamism also calls for resilient and adaptive

scheduling algorithms that can manage the

ambiguity and unpredictability of resource

conditions and modify scheduling choices as

necessary.

4 Resource utilization: Workflow scheduling is

complicated by resource utilization, which

measures how sound resources are employed

to carry out process activities. How resources

are used can impact the workflow’s efficiency,

affordability, energy usage, and the content-

ment of both users and providers. Therefore, it

might be challenging to establish an optimal

or nearly optimal task-to-resource assignment

that maximizes resource use, particularly in

dynamic and heterogeneous contexts like

cloud and fog computing [114].

4 Conflicting objectives: It is a challenge in

workflow scheduling since different goals go

to be optimized simultaneously, but they

are frequently inconsistent or incompatible.

For case, minimizing the execution time and

minimizing the execution fetched of a

Fig. 11 Distribution of real and random datasets in workflow

scheduling research

Fig. 12 Simulation environment in selected papers
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25%
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Fig. 13 Simulation tools on selected papers
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Table 4 The main parameters in the selected paper

References Makespan Cost Fairness Continuity Energy Response Time Network Utilization Scheduling Time Wait Time

[2] * * * *

[3] * * *

[56] * * *

[43] * *

[57] *

[77] * * * *

[66] * *

[71] * *

[58] *

[65] *

[44] * * *

[60] * * *

[48] * *

[73] *

[47] * *

[49] *

[40] * *

[63] *

[69] * *

[46] * * *

[47] *

[70]

[72] * * *

[30] * * *

[28] *

[61] * * *

[59] * * *

[67] * *

[45] * *

[41] * *

[76] * *

[62] * *

[68] * *

[55] * * *

[61] * * * *

[53] * *

[75] * * * *

[50] * * * *

[51] * * * *

[52] *

[36] * * * *

[37] * * *

[64] *

[80]

[81] * *

[82] * * *

[83] * *

[84] * * *

[85] * * *
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Table 4 (continued)

References Makespan Cost Fairness Continuity Energy Response Time Network Utilization Scheduling Time Wait Time

[86] * * *

[87] * * * *

[88] * * * * *

[89] * * *

[90] * * *

[91] * *

[92] * *

[93] * * *

[94] * * *

[95] * * *

[96] * * *

[97] * * *

[98] * *

[99] * *

[100] * * *

[101] *

[17] * * *

[102] * * *

[103] * * *

[104] * * * * *

[105] * * *

[106] * * * *

[107] * * *

[108] * *

[109] * * * * *

[110] * *

[111] * * *

[112] * * *

[113] * * *

References Deadline Throughput Imbalance

Degree

Resource

Utilization

Violation

Cost

Communication

Cost

Speed

up

Efficiency Reliability

[2] * * *

[3] * *

[56] * *

[43] *

[57]

[77]

[66]

[71]

[58]

[65] *

[44]

[60] * *

[48]

[73] *

[47] *

[49]

[40] *
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Table 4 (continued)

References Deadline Throughput Imbalance

Degree

Resource

Utilization

Violation

Cost

Communication

Cost

Speed

up

Efficiency Reliability

[63] * *

[69]

[46]

[47]

[70] * *

[72] * *

[30] *

[28] * *

[61]

[59]

[67]

[45]

[41]

[76]

[62]

[68]

[55] *

[61]

[53] *

[75]

[50]

[51] *

[52] * *

[36]

[37]

[64] * *

[80] *

[81]

[82] * *

[83] *

[84] * * *

[85] * * *

[86] * * *

[87] *

[88] * *

[89] * * * *

[90] * * * *

[91] * * *

[92] * * *

[93] * * * *

[94] * * * *

[95] * *

[96] * * * * *

[97] * * * * *

[98] * * *

[99] * * *

[100] * * * *

[101] *

Cluster Computing

123



workflow are two common targets, but they -

more often than not require distinctive trade-

offs and compromises. Hence, finding

an ideal or near optimal task of errands to as-

sets that can satisfy all the goals and impera-

tives of the workflow may be

a troublesome issue, particularly in heteroge-

neous and energetic situations such as cloud

and fog computing.

4 Scalability: it is critical for workflow schedul-

ing since it influences the execution, produc-

tivity, and unwavering quality of the

framework. The complexity and measure of

the workflows, which may include hundreds

or thousands of assignments with different

conditions, imperatives, and prerequisites.

The heterogeneity and dynamism of the

assets, which may have diverse characteristics

and accessibility, take a toll and may alter

over time due to disappointments, vacillations,

or competition. The trade-off between clash-

ing destinations may require distinctive trade-

offs and compromises among the benefits

quality, asset utilization, and client fulfilment.

Hence, finding an ideal or near-optimal task of

assigning assets that can fulfil all the targets

and limitations of the workflow and scale well

with the increasing workload and asset pool

Fig. 14 distribution on different

parameters in selected papers

Table 4 (continued)

References Deadline Throughput Imbalance

Degree

Resource

Utilization

Violation

Cost

Communication

Cost

Speed

up

Efficiency Reliability

[17] * * *

[102] * * * *

[103] * * * *

[104] * * * * *

[105] * * *

[106] * *

[107] * * *

[108] * * *

[109] * * * * * *

[110] * *

[111] * *

[112] *

[113] *
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may be a challenging issue, particularly in

heterogeneous and energetic situations such as

cloud and fog computing [66].

4 Complexity: Complexity is a challenge in

workflow scheduling because it refers to the

difficulty of finding an optimal or near-opti-

mal solution to an NP-hard workflow schedul-

ing problem. Complexity is influenced by

several factors, such as the size and structure

of the workflow, the number and characteris-

tics of resources, the workflow’s goals and

constraints, and the environment’s uncertainty

and variability. Therefore, finding effective

and efficient scheduling algorithms to address

the complexity of the workflow scheduling

problem is challenging, especially in hetero-

geneous and dynamic environments such as

cloud computing and fog.

4 Estimation: Time estimation for tasks and

workflow is a challenge in workflow schedul-

ing because it requires predicting the comple-

tion time of each task and the entire workflow

based on available information about tasks,

resources, and the environment. It is chal-

lenging to find accurate and robust time

estimation methods that can cope with the

complexity, variability, heterogeneity, dynam-

ics, uncertainty, and randomness of working

on flow scheduling problems, especially in

heterogeneous and dynamic environments

such as cloud computing and fog.

4 Research gaps: Lack of scheduling mecha-

nisms optimized for emerging edge computing

paradigms like cloudlets and nano data cen-

ters. Existing work focuses on cloud/fog

environments. More research is needed on

scheduling for serverless platforms and Func-

tions as a Service (FaaS), which have different

constraints. There is a need for a more

extensive evaluation of real-world traces and

workloads at scale rather than simulations.

Insufficient attention to incremental deploy-

ment in brownfield environments alongside

legacy systems. Lack of standardization

around APIs, abstractions, and interfaces for

cross-platform workflow management. Short-

age of solutions focused on industry verticals

like healthcare, smart cities, and augmented

reality.

9 Conclusions

Workflow scheduling is an essential problem in distributed

environments, especially in cloud and fog computing.

Many researchers have tackled this problem using artificial

intelligence-based solutions. We decided to review the

recent literature (from the recent four years) on the meth-

ods and techniques used in these environments. This paper

provides a conceptual overview, a classification, and a

taxonomy of the methods, algorithms, and architectures for

workflow management in cloud and fog environments. We

also discuss the future directions of this field. We found

that there are many algorithms for workflow scheduling,

and they vary in the factors and parameters they consider

for scheduling. We examine these factors and their related

challenges and issues, such as resource utilization, perfor-

mance metrics, and cost management. We also observed

that workflow scheduling is an NP-hard problem, so many

researchers used heuristic algorithms or hybrid approaches

that combine artificial intelligence and modelling. We

categorized some properties that pose challenges and open

issues in workflow scheduling. Considering these aspects

can enhance the quality and flexibility of workflow

scheduling methods.
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