[en] Alzheimer's disease is the world's most common neurodegenerative disorder. It is associated with neuroinflammation involving activation of microglia by β-amyloid (Aβ) deposits. Based on previous studies showing apoptosis-associated speck-like protein containing a CARD (ASC) binding and cross-seeding extracellular Aβ, we investigate the propagation of ASC between primary microglia and the effects of ASC-Aβ composites on microglial inflammasomes and function. Indeed, ASC released by a pyroptotic cell can be functionally built into the neighboring microglia NOD-like receptor protein (NLRP3) inflammasome. Compared with protein-only application, exposure to ASC-Aβ composites amplifies the proinflammatory response, resulting in pyroptotic cell death, setting free functional ASC and inducing a feedforward stimulating vicious cycle. Clustering around ASC fibrils also compromises clearance of Aβ by microglia. Together, these data enable a closer look at the turning point from acute to chronic Aβ-related neuroinflammation through formation of ASC-Aβ composites.
Disciplines :
Neurology
Author, co-author :
Friker, Lea L; Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany
Scheiblich, Hannah; Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany
Hochheiser, Inga V; Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
Brinkschulte, Rebecca; Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
Riedel, Dietmar; Max Planck Institute for Biophysical Chemistry, Department of Structural Dynamics, 37077 Göttingen, Germany
Latz, Eicke; Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany
Geyer, Matthias; Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
HENEKA, Michael ; University of Bonn Medical Center, 53127 Bonn, Germany > epartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology ; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany ; University of Massachusetts Medical School, Worcester, MA 01655, USA > Department of Infectious Diseases and Immunology
External co-authors :
yes
Language :
English
Title :
β-Amyloid Clustering around ASC Fibrils Boosts Its Toxicity in Microglia.
Deutsche Forschungsgemeinschaft National Institutes of Health Deutsche Forschungsgemeinschaft
Funding text :
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC2151 – 390873048 . M.T.H. received further funding from the NIH grant ( R01 AG059752-02 ). The authors thank Tobias Dierkes for chemical compound and cell line exchange between the groups. We would particularly like to thank the Germen Center for Neurodegenerative Disease within the Helmholtz Association (DZNE) in Bonn, Germany for providing laboratory premises and facilities.This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy ? EXC2151 ? 390873048. M.T.H. received further funding from the NIH grant (R01 AG059752-02). The authors thank Tobias Dierkes for chemical compound and cell line exchange between the groups. We would particularly like to thank the Germen Center for Neurodegenerative Disease within the Helmholtz Association (DZNE) in Bonn, Germany for providing laboratory premises and facilities. Conceptualization, L.L.F. and M.T.H.; Methodology, L.L.F. H.S. and M.T.H.; Investigation, L.L.F. H.S. I.V.H. R.B. and D.R.; Writing ? Original Draft, L.L.F. H.S. R.B. and M.T.H.; Writing ? Review & Editing, L.L.F. H.S. and M.T.H.; Funding Acquisition, M.T.H.; Resources, D.R. E.L. M.G. and M.T.H.; Supervision, M.T.H. Michael T. Heneka serves as an advisory board member at IFM Therapeutics, Alector, and Tiaki. He received honoraria for oral presentations from Novartis, Roche, and Biogen. The authors declare that there is no conflict of interest with regard to the experimental part of this study.
Baik, S.H., Kang, S., Son, S.M., Mook-Jung, I., Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer's disease mouse model. Glia 64 (2016), 2274–2290.
Bergsbaken, T., Fink, S.L., Cookson, B.T., Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7 (2009), 99–109.
Boucher, D., Monteleone, M., Coll, R.C., Chen, K.W., Ross, C.M., Teo, J.L., Gomez, G.A., Holley, C.L., Bierschenk, D., Stacey, K.J., et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J. Exp. Med. 215 (2018), 827–840.
Cai, Z., Hussain, M.D., Yan, L.-J., Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int. J. Neurosci. 124 (2014), 307–321.
Chakrabarty, P., Li, A., Ladd, T.B., Strickland, M.R., Koller, E.J., Burgess, J.D., Funk, C.C., Cruz, P.E., Allen, M., Yaroshenko, M., et al. TLR5 decoy receptor as a novel anti-amyloid therapeutic for Alzheimer's disease. J. Exp. Med. 215 (2018), 2247–2264.
Cho, M.-H., Cho, K., Kang, H.-J., Jeon, E.-Y., Kim, H.-S., Kwon, H.-J., Kim, H.-M., Kim, D.-H., Yoon, S.-Y., Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy 10 (2014), 1761–1775.
Clayton, K.A., Van Enoo, A.A., Ikezu, T., Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Front. Neurosci., 11, 2017, 680.
Dick, M.S., Sborgi, L., Rühl, S., Hiller, S., Broz, P., ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat. Commun., 7, 2016, 11929.
Doens, D., Fernández, P.L., Microglia receptors and their implications in the response to amyloid β for Alzheimer's disease pathogenesis. J. Neuroinflammation, 11, 2014, 48.
Fernandes-Alnemri, T., Wu, J., Yu, J.-W., Datta, P., Miller, B., Jankowski, W., Rosenberg, S., Zhang, J., Alnemri, E.S., The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14 (2007), 1590–1604.
Franklin, B.S., Bossaller, L., De Nardo, D., Ratter, J.M., Stutz, A., Engels, G., Brenker, C., Nordhoff, M., Mirandola, S.R., Al-Amoudi, A., et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15 (2014), 727–737.
Franklin, B.S., Latz, E., Schmidt, F.I., The intra- and extracellular functions of ASC specks. Immunol. Rev. 281 (2018), 74–87.
Freeman, L., Guo, H., David, C.N., Brickey, W.J., Jha, S., Ting, J.P.-Y., NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J. Exp. Med. 214 (2017), 1351–1370.
Giordano, G., Hong, S., Faustman, E.M., Costa, L.G., Measurements of Cell Death in Neuronal and Glial Cells. Costa, L.G., Giordano, G., Guizzetti, M., (eds.) In Vitro Neurotoxicology: Methods and Protocols, 2011, Humana Press, 171–178.
Giulian, D., Baker, T.J., Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6 (1986), 2163–2178.
Götz, J., Chen, F., van Dorpe, J., Nitsch, R.M., Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293 (2001), 1491–1495.
Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., Cruchaga, C., Sassi, C., Kauwe, J.S.K., Younkin, S., et al., Alzheimer Genetic Analysis Group. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368 (2013), 117–127.
Halle, A., Hornung, V., Petzold, G.C., Stewart, C.R., Monks, B.G., Reinheckel, T., Fitzgerald, K.A., Latz, E., Moore, K.J., Golenbock, D.T., The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9 (2008), 857–865.
Hanisch, U.-K., Kettenmann, H., Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10 (2007), 1387–1394.
Hansen, D.V., Hanson, J.E., Sheng, M., Microglia in Alzheimer's disease. J. Cell Biol. 217 (2018), 459–472.
Heneka, M.T., Kummer, M.P., Latz, E., Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14 (2014), 463–477.
Heneka, M.T., Golenbock, D.T., Latz, E., Innate immunity in Alzheimer's disease. Nat. Immunol. 16 (2015), 229–236.
Hoss, F., Rodriguez-Alcazar, J.F., Latz, E., Assembly and regulation of ASC specks. Cell. Mol. Life Sci. 74 (2017), 1211–1229.
Jay, T.R., von Saucken, V.E., Landreth, G.E., TREM2 in Neurodegenerative Diseases. Mol. Neurodegener., 12, 2017, 56.
Jonsson, T., Stefansson, H., Steinberg, S., Jonsdottir, I., Jonsson, P.V., Snaedal, J., Bjornsson, S., Huttenlocher, J., Levey, A.I., Lah, J.J., et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med. 368 (2013), 107–116.
Karmakar, M., Katsnelson, M.A., Dubyak, G.R., Pearlman, E., Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP. Nat. Commun., 7, 2016, 10555.
Kawai, T., Akira, S., The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11 (2010), 373–384.
Kinney, J.W., Bemiller, S.M., Murtishaw, A.S., Leisgang, A.M., Salazar, A.M., Lamb, B.T., Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement. (N. Y.) 4 (2018), 575–590.
Kleinberger, G., Yamanishi, Y., Suárez-Calvet, M., Czirr, E., Lohmann, E., Cuyvers, E., Struyfs, H., Pettkus, N., Wenninger-Weinzierl, A., Mazaheri, F., et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med., 6, 2014, 243ra86.
Kumar, V., Toll-like receptors in the pathogenesis of neuroinflammation. J. Neuroimmunol. 332 (2019), 16–30.
Latz, E., Xiao, T.S., Stutz, A., Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13 (2013), 397–411.
Letiembre, M., Liu, Y., Walter, S., Hao, W., Pfander, T., Wrede, A., Schulz-Schaeffer, W., Fassbender, K., Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol. Aging 30 (2009), 759–768.
Li, Y., Fu, T.-M., Lu, A., Witt, K., Ruan, J., Shen, C., Wu, H., Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1. Proc. Natl. Acad. Sci. USA 115 (2018), 10845–10852.
Liu, S., Liu, Y., Hao, W., Wolf, L., Kiliaan, A.J., Penke, B., Rübe, C.E., Walter, J., Heneka, M.T., Hartmann, T., et al. TLR2 is a primary receptor for Alzheimer's amyloid β peptide to trigger neuroinflammatory activation. J. Immunol. 188 (2012), 1098–1107.
Lu, A., Magupalli, V.G., Ruan, J., Yin, Q., Atianand, M.K., Vos, M.R., Schröder, G.F., Fitzgerald, K.A., Wu, H., Egelman, E.H., Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156 (2014), 1193–1206.
Monteleone, M., Stanley, A.C., Chen, K.W., Brown, D.L., Bezbradica, J.S., von Pein, J.B., Holley, C.L., Boucher, D., Shakespear, M.R., Kapetanovic, R., et al. Interleukin-1β Maturation Triggers Its Relocation to the Plasma Membrane for Gasdermin-D-Dependent and -Independent Secretion. Cell Rep. 24 (2018), 1425–1433.
N'Diaye, E.-N., Branda, C.S., Branda, S.S., Nevarez, L., Colonna, M., Lowell, C., Hamerman, J.A., Seaman, W.E., TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J. Cell Biol. 184 (2009), 215–223.
Nelson, P.T., Alafuzoff, I., Bigio, E.H., Bouras, C., Braak, H., Cairns, N.J., Castellani, R.J., Crain, B.J., Davies, P., Del Tredici, K., et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71 (2012), 362–381.
Olson, J.K., Miller, S.D., Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173 (2004), 3916–3924.
Sarlus, H., Heneka, M.T., Microglia in Alzheimer's disease. J. Clin. Invest. 127 (2017), 3240–3249.
Scheiblich, H., Schlütter, A., Golenbock, D.T., Latz, E., Martinez-Martinez, P., Heneka, M.T., Activation of the NLRP3 inflammasome in microglia: the role of ceramide. J. Neurochem. 143 (2017), 534–550.
Sheedy, F.J., Grebe, A., Rayner, K.J., Kalantari, P., Ramkhelawon, B., Carpenter, S.B., Becker, C.E., Ediriweera, H.N., Mullick, A.E., Golenbock, D.T., et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14 (2013), 812–820.
Stewart, C.R., Stuart, L.M., Wilkinson, K., van Gils, J.M., Deng, J., Halle, A., Rayner, K.J., Boyer, L., Zhong, R., Frazier, W.A., et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11 (2010), 155–161.
Stutz, A., Horvath, G.L., Monks, B.G., Latz, E., ASC Speck Formation as a Readout for Inflammasome Activation. De Nardo, C.M., Latz, E., (eds.) The Inflammasome: Methods and Protocols, 2013, Humana Press, 91–101.
Terrill-Usery, S.E., Mohan, M.J., Nichols, M.R., Amyloid-β(1-42) protofibrils stimulate a quantum of secreted IL-1β despite significant intracellular IL-1β accumulation in microglia. Biochim. Biophys. Acta. 1842 (2014), 2276–2285.
Ulrich, J.D., Holtzman, D.M., TREM2 Function in Alzheimer's Disease and Neurodegeneration. ACS Chem. Neurosci. 7 (2016), 420–427.
Venegas, C., Kumar, S., Franklin, B.S., Dierkes, T., Brinkschulte, R., Tejera, D., Vieira-Saecker, A., Schwartz, S., Santarelli, F., Kummer, M.P., et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. Nature 552 (2017), 355–361.
Walter, S., Letiembre, M., Liu, Y., Heine, H., Penke, B., Hao, W., Bode, B., Manietta, N., Walter, J., Schulz-Schüffer, W., Fassbender, K., Role of the toll-like receptor 4 in neuroinflammation in Alzheimer's disease. Cell. Physiol. Biochem. 20 (2007), 947–956.
Xiang, X., Werner, G., Bohrmann, B., Liesz, A., Mazaheri, F., Capell, A., Feederle, R., Knuesel, I., Kleinberger, G., Haass, C., TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid clearance. EMBO Mol. Med. 8 (2016), 992–1004.
Yang, Y., Wang, H., Kouadir, M., Song, H., Shi, F., Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis., 10, 2019, 128.
Zvěřová, M., Clinical aspects of Alzheimer's disease. Clin. Biochem. 72 (2019), 3–6.