[en] Approximately ten million people are diagnosed with dementia annually since they experience difficulties with memory and thinking skills. Since neurodegenerative diseases are diagnosed late, most of them are difficult to treat. This is due to the increased severity of the disease during the progression when neuroinflammation plays a critical role. The activation of immune cells, especially microglia, plays a crucial role in the development of neurodegenerative diseases. Molecular sensors within these microglia, such as the NLRP3 inflammasome, are activated by signals that represent the hallmarks of neurodegenerative diseases. Here, we first summarize the two activation steps of NLRP3 inflammasome activation. Furthermore, we discuss the key factors that contribute to NLRP3 inflammasome activation in the different neuroinflammatory diseases, like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). The prominent NLRP3 inflammasome triggers include amyloid β and tau oligomers in AD, α-synuclein in PD, and superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP43) in ALS. NLRP3 inhibitor treatment has shown promising results in several preclinical mouse models of AD, PD, and ALS. Finally, we postulate that current understandings underpin the potential for NLRP3 inhibitors as a therapeutic target in neurodegenerative diseases.
Disciplines :
Neurology
Author, co-author :
Ravichandran, Kishore Aravind; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Bonn 53127, Germany ; Cooperation unit Neuroinflammation, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
HENEKA, Michael ; Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University of Bonn Medical Center, Bonn 53127, Germany ; Cooperation unit Neuroinflammation, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany ; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, U.S.A
External co-authors :
yes
Language :
English
Title :
Inflammasome activation in neurodegenerative diseases.
Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L. et al. (2019) Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581, https://doi.org/10.1038/s41582-019-0244-7
Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L. et al. (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405, https://doi.org/10.1016/S1474-4422(15)70016-5
Heneka, M.T., Kummer, M.P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A. et al. (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678, https://doi.org/10.1038/nature11729
Venegas, C., Kumar, S., Franklin, B.S., Dierkes, T., Brinkschulte, R., Tejera, D. et al. (2017) Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552, 355–361, https://doi.org/10.1038/nature25158
Ising, C., Venegas, C., Zhang, S., Scheiblich, H., Schmidt, S.V., Vieira-Saecker, A. et al. (2019) NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673, https://doi.org/10.1038/s41586-019-1769-z
Latz, E., Xiao, T.S. and Stutz, A. (2013) Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411, https://doi.org/10.1038/nri3452
Broz, P. and Dixit, V.M. (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420, https://doi.org/10.1038/nri.2016.58
Rodrigues, T.S., de Sá, K.S.G., Ishimoto, A.Y., Becerra, A., Oliveira, S., Almeida, L. et al. (2021) Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 218, e20201707, https://doi.org/10.1084/jem.20201707
Zheng, D., Liwinski, T. and Elinav, E. (2020) Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov. 6, 36, https://doi.org/10.1038/s41421-020-0167-x
Davis, B.K., Wen, H. and Ting, J.P.-Y. (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29, 707–735, https://doi.org/10.1146/annurev-immunol-031210-101405
Schroder, K. and Tschopp, J. (2010) The inflammasomes. Cell 140, 821–832, https://doi.org/10.1016/j.cell.2010.01.040
Martinon, F., Burns, K. and Tschopp, J. (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426, https://doi.org/10.1016/S1097-2765(02)00599-3
Kaushal, V., Dye, R., Pakavathkumar, P., Foveau, B., Flores, J., Hyman, B. et al. (2015) Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ. 22, 1676–1686, https://doi.org/10.1038/cdd.2015.16
Heneka, M.T., McManus, R.M. and Latz, E. (2018) Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 19, 610–621, https://doi.org/10.1038/s41583-018-0055-7
Liu, H., Leak, R.K. and Hu, X. (2016) Neurotransmitter receptors on microglia. Stroke and Vascular Neurology, vol. 1, pp. 52–58, BMJ Publishing Group, https://doi.org/10.1136/svn-2016-000012
Bertheloot, D., Latz, E. and Franklin, B.S. (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol. Immunol. 18, 1106–1121, https://doi.org/10.1038/s41423-020-00630-3
Hoffman, H.M., Mueller, J.L., Broide, D.H., Wanderer, A.A. and Kolodner, R.D. (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29, 301–305, https://doi.org/10.1038/ng756
Swanson, K.V., Deng, M. and Ting, J.P.-Y. (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489, https://doi.org/10.1038/s41577-019-0165-0
Xing, Y., Yao, X., Li, H., Xue, G., Guo, Q., Yang, G. et al. (2017) Cutting edge: TRAF6 mediates TLR/IL-1R signaling-induced nontranscriptional priming of the NLRP3 inflammasome. J. Immunol. 199, 1561–1566, https://doi.org/10.4049/jimmunol.1700175
Yan, Y., Jiang, W., Liu, L., Wang, X., Ding, C., Tian, Z. et al. (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62–73, https://doi.org/10.1016/j.cell.2014.11.047
Py, B.F., Kim, M.-S., Vakifahmetoglu-Norberg, H. and Yuan, J. (2013) Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol. Cell 49, 331–338, https://doi.org/10.1016/j.molcel.2012.11.009
Singh, M., Kumari, B. and Yadav, U.C.S. (2019) Regulation of oxidized LDL-induced inflammatory process through NLRP3 inflammasome activation by the deubiquitinating enzyme BRCC36. Inflamm. Res. 68, 999–1010, https://doi.org/10.1007/s00011-019-01281-5
Song, N., Liu, Z.-S., Xue, W., Bai, Z.-F., Wang, Q.-Y., Dai, J. et al. (2017) NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol. Cell 68, 185.e6–197.e6, https://doi.org/10.1016/j.molcel.2017.08.017
Mortimer, L., Moreau, F., MacDonald, J.A. and Chadee, K. (2016) NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat. Immunol. 17, 1176–1186, https://doi.org/10.1038/ni.3538
Stutz, A., Kolbe, C.-C., Stahl, R., Horvath, G.L., Franklin, B.S., van Ray, O. et al. (2017) NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J. Exp. Med. 214, 1725–1736, https://doi.org/10.1084/jem.20160933
Yang, Y., Wang, H., Kouadir, M., Song, H. and Shi, F. (2019) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 10, 128, https://doi.org/10.1038/s41419-019-1413-8
Seok, J.K., Kang, H.C., Cho, Y.-Y., Lee, H.S. and Lee, J.Y. (2021) Regulation of the NLRP3 inflammasome by post-translational modifications and small molecules. Front. Immunol. 11, 3877, https://doi.org/10.3389/fimmu.2020.618231
Duncan, J.A., Bergstralh, D.T., Wang, Y., Willingham, S.B., Ye, Z., Zimmermann, A.G. et al. (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl. Acad. Sci. U.S.A. 104, 8041–8046, https://doi.org/10.1073/pnas.0611496104
Oroz, J., Barrera-Vilarmau, S., Alfonso, C., Rivas, G. and de Alba, E. (2016) ASC pyrin domain self-associates and binds NLRP3 protein using equivalent binding interfaces*. J. Biol. Chem. 291, 19487–19501, https://doi.org/10.1074/jbc.M116.741082
Boucher, D., Monteleone, M., Coll, R.C., Chen, K.W., Ross, C.M., Teo, J.L. et al. (2018) Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J. Exp. Med. 215, 827–840, https://doi.org/10.1084/jem.20172222
Heneka, M.T., McManus, R.M. and Latz, E. (2018) Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 19, 610–621, https://doi.org/10.1038/s41583-018-0055-7
Hafner-Bratkovič, I., Benčina, M., Fitzgerald, K.A., Golenbock, D. and Jerala, R. (2012) NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1β and neuronal toxicity. Cell. Mol. Life Sci. 69, 4215–4228, https://doi.org/10.1007/s00018-012-1140-0
de Rivero Vaccari, J.P., Bastien, D., Yurcisin, G., Pineau, I., Dietrich, W.D., De Koninck, Y. et al. (2012) P2X4 receptors influence inflammasome activation after spinal cord injury. J. Neurosci. 32, 3058–3066, https://doi.org/10.1523/JNEUROSCI.4930-11.2012
He, Y., Zeng, M.Y., Yang, D., Motro, B. and Núñez, G. (2016) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357, https://doi.org/10.1038/nature16959
Shi, H., Wang, Y., Li, X., Zhan, X., Tang, M., Fina, M. et al. (2016) NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17, 250–258, https://doi.org/10.1038/ni.3333
Hafner-Bratkovič, I., Sušjan, P., Lainšček, D., Tapia-Abellán, A., Cerović, K., Kadunc, L. et al. (2018) NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nat. Commun. 9, 5182, https://doi.org/10.1038/s41467-018-07573-4
Zhang, Y., Rong, H., Zhang, F.-X., Wu, K., Mu, L., Meng, J. et al. (2018) A membrane potential- and calpain-dependent reversal of Caspase-1 inhibition regulates canonical NLRP3 inflammasome. Cell Rep. 24, 2356.e5–2369.e5, https://doi.org/10.1016/j.celrep.2018.07.098
Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B.L., Rajendiran, T.M. and Núñez, G. (2013) K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153, https://doi.org/10.1016/j.immuni.2013.05.016
Kelley, N., Jeltema, D., Duan, Y. and He, Y. (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 20, 3328, https://doi.org/10.3390/ijms20133328
Won, J.-H., Park, S., Hong, S., Son, S. and Yu, J.-W. (2015) Rotenone-induced impairment of mitochondrial electron transport chain confers a selective priming signal for NLRP3 inflammasome activation*. J. Biol. Chem. 290, 27425–27437, https://doi.org/10.1074/jbc.M115.667063
Park, S., Won, J.-H., Hwang, I., Hong, S., Lee, H.K. and Yu, J.-W. (2015) Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci. Rep. 5, 15489, https://doi.org/10.1038/srep15489
Zhong, Z., Liang, S., Sanchez-Lopez, E., He, F., Shalapour, S., Lin, X.-J. et al. (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203, https://doi.org/10.1038/s41586-018-0372-z
Nakanishi, H. (2020) Microglial cathepsin B as a key driver of inflammatory brain diseases and brain aging. Neural. Regen. Res. 15, 25–29, https://doi.org/10.4103/1673-5374.264444
Suzuki, T., Kohyama, K., Moriyama, K., Ozaki, M., Hasegawa, S., Ueno, T. et al. (2020) Extracellular ADP augments microglial inflammasome and NF-κB activation via the P2Y12 receptor. Eur. J. Immunol. 50, 205–219, https://doi.org/10.1002/eji.201848013
Chevriaux, A., Pilot, T., Derangère, V., Simonin, H., Martine, P., Chalmin, F. et al. (2020) Cathepsin B is required for NLRP3 inflammasome activation in macrophages, through NLRP3 interaction. Front. Cell Dev. Biol. 8, 167, https://doi.org/10.3389/fcell.2020.00167
Campagno, K.E. and Mitchell, C.H. (2021) The P2X7 receptor in microglial cells modulates the endolysosomal axis, autophagy, and phagocytosis. Front. Cell. Neurosci. 15, 66, https://doi.org/10.3389/fncel.2021.645244
Frank, M.G., Hershman, S.A., Weber, M.D., Watkins, L.R. and Maier, S.F. (2014) Chronic exposure to exogenous glucocorticoids primes microglia to pro-inflammatory stimuli and induces NLRP3 mRNA in the hippocampus. Psychoneuroendocrinology 40, 191–200, https://doi.org/10.1016/j.psyneuen.2013.11.006
Frank, M.G., Weber, M.D., Fonken, L.K., Hershman, S.A., Watkins, L.R. and Maier, S.F. (2016) The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: A role for the NLRP3 inflammasome. Brain Behav. Immun. 55, 215–224, https://doi.org/10.1016/j.bbi.2015.10.009
De Filippis, L., Halikere, A., McGowan, H., Moore, J.C., Tischfield, J.A., Hart, R.P. et al. (2016) Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol. Brain 9, 51, https://doi.org/10.1186/s13041-016-0221-7
Zielinski, M.R., Gerashchenko, D., Karpova, S.A., Konanki, V., McCarley, R.W., Sutterwala, F.S. et al. (2017) The NLRP3 inflammasome modulates sleep and NREM sleep delta power induced by spontaneous wakefulness, sleep deprivation and lipopolysaccharide. Brain Behav. Immun. 62, 137–150, https://doi.org/10.1016/j.bbi.2017.01.012
Scheiblich, H., Schlütter, A., Golenbock, D.T., Latz, E., Martinez-Martinez, P. and Heneka, M.T. (2017) Activation of the NLRP3 inflammasome in microglia: the role of ceramide. J. Neurochem. 143, 534–550, https://doi.org/10.1111/jnc.14225
Christ, A., Günther, P., Lauterbach, M.A.R., Duewell, P., Biswas, D., Pelka, K. et al. (2018) Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162.e14–175.e14, https://doi.org/10.1016/j.cell.2017.12.013
Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S. et al. (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845, https://doi.org/10.1126/science.1194637
Li, Q. and Barres, B.A. (2018) Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242, https://doi.org/10.1038/nri.2017.125
Escartin, C., Galea, E., Lakatos, A., O’Callaghan, J.P., Petzold, G.C., Serrano-Pozo, A. et al. (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325, https://doi.org/10.1038/s41593-020-00783-4
Denes, A., Coutts, G., Lénárt, N., Cruickshank, S.M., Pelegrin, P., Skinner, J. et al. (2015) AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc. Natl. Acad. Sci. U.S.A. 112, 4050–4055, https://doi.org/10.1073/pnas.1419090112
Freeman, L., Guo, H., David, C.N., Brickey, W.J., Jha, S. and Ting, J.P.-Y. (2017) NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J. Exp. Med. 214, 1351–1370, https://doi.org/10.1084/jem.20150237
Zhu, J., Hu, Z., Han, X., Wang, D., Jiang, Q., Ding, J. et al. (2018) Dopamine D2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of β-arrestin2 and NLRP3. Cell Death Differ. 25, 2037–2049, https://doi.org/10.1038/s41418-018-0127-2
Ojeda, D.S., Grasso, D., Urquiza, J., Till, A., Vaccaro, M.I. and Quarleri, J. (2018) Cell death is counteracted by mitophagy in HIV-productively infected astrocytes but is promoted by inflammasome activation among non-productively infected cells. Front. Immunol. 9, 2633, https://doi.org/10.3389/fimmu.2018.02633
Alzheimer’s association (2021) 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 17, 327–406, https://doi.org/10.1002/alz.12328
Hanslik, K.L. and Ulland, T.K. (2020) The role of microglia and the Nlrp3 inflammasome in Alzheimer’s disease. Front. Neurol. 11, 570711, https://doi.org/10.3389/fneur.2020.570711
Guo, T., Zhang, D., Zeng, Y., Huang, T.Y., Xu, H. and Zhao, Y. (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 15, 40, https://doi.org/10.1186/s13024-020-00391-7
Müller, U.C., Deller, T. and Korte, M. (2017) Not just amyloid: physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci. 18, 281–298, https://doi.org/10.1038/nrn.2017.29
Gratuze, M., Leyns, C.E.G. and Holtzman, D.M. (2018) New insights into the role of TREM2 in Alzheimer’s disease. Mol. Neurodegener. 13, 66, https://doi.org/10.1186/s13024-018-0298-9
Halle, A., Hornung, V., Petzold, G.C., Stewart, C.R., Monks, B.G., Reinheckel, T. et al. (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9, 857–865, https://doi.org/10.1038/ni.1636
Lučiūnaite, A., McManus, R.M., Jankunec, M., Rácz, I., Dansokho, C., Dalgediene, I. et al. (2020) Soluble Aβ oligomers and protofibrils induce NLRP3 inflammasome activation in microglia. J. Neurochem. 155, 650–661, https://doi.org/10.1111/jnc.14945
Verma, M., Vats, A. and Taneja, V. (2015) Toxic species in amyloid disorders: oligomers or mature fibrils. Ann. Indian Acad. Neurol. 18, 138–145, https://doi.org/10.4103/0972-2327.144284
Nakanishi, A., Kaneko, N., Takeda, H., Sawasaki, T., Morikawa, S., Zhou, W. et al. (2018) Amyloid β directly interacts with NLRP3 to initiate inflammasome activation: identification of an intrinsic NLRP3 ligand in a cell-free system. Inflamm. Regen. 38, 27, https://doi.org/10.1186/s41232-018-0085-6
Reed-Geaghan, E.G., Savage, J.C., Hise, A.G. and Landreth, G.E. (2009) CD14 and Toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J. Neurosci. 29, 11982–11992, https://doi.org/10.1523/JNEUROSCI.3158-09.2009
Liu, S., Liu, Y., Hao, W., Wolf, L., Kiliaan, A.J., Penke, B. et al. (2012) TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J. Immunol. 188, 1098–1107, https://doi.org/10.4049/jimmunol.1101121
De, S., Wirthensohn, D.C., Flagmeier, P., Hughes, C., Aprile, F.A., Ruggeri, F.S. et al. (2019) Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nat. Commun. 10, 1541, https://doi.org/10.1038/s41467-019-09477-3
Facci, L., Barbierato, M., Zusso, M., Skaper, S.D. and Giusti, P. (2018) Serum amyloid A primes microglia for ATP-dependent interleukin-1β release. J. Neuroinflammation 15, 164, https://doi.org/10.1186/s12974-018-1205-6
Fu, W., Vukojevic, V., Patel, A., Soudy, R., MacTavish, D., Westaway, D. et al. (2017) Role of microglial amylin receptors in mediating beta amyloid (Aβ)-induced inflammation. J Neuroinflammation 14, 199, https://doi.org/10.1186/s12974-017-0972-9
Huang, Y., Happonen, K.E., Burrola, P.G., O’Connor, C., Hah, N., Huang, L. et al. (2021) Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat. Immunol. 22, 586–594, https://doi.org/10.1038/s41590-021-00913-5
Franklin, B.S., Bossaller, L., De Nardo, D., Ratter, J.M., Stutz, A., Engels, G. et al. (2014) The adaptor ASC has extracellular and “prionoid” activities that propagate inflammation. Nat. Immunol. 15, 727–737, https://doi.org/10.1038/ni.2913
Barbier, P., Zejneli, O., Martinho, M., Lasorsa, A., Belle, V., Smet-Nocca, C. et al. (2019) Role of tau as a microtubule-associated protein: structural and functional aspects. Front. Aging Neurosci. 11, 204, https://doi.org/10.3389/fnagi.2019.00204
Arnsten, A.F.T., Datta, D., Del Tredici, K. and Braak, H. (2021) Hypothesis: tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimers Dement. 17, 115–124, https://doi.org/10.1002/alz.12192
Stancu, I.-C., Cremers, N., Vanrusselt, H., Couturier, J., Vanoosthuyse, A., Kessels, S. et al. (2019) Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol. 137, 599–617, https://doi.org/10.1007/s00401-018-01957-y
Busche, M.A. and Hyman, B.T. (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci. 23, 1183–1193, https://doi.org/10.1038/s41593-020-0687-6
Garcia-Reitboeck, P., Phillips, A., Piers, T.M., Villegas-Llerena, C., Butler, M., Mallach, A. et al. (2018) Human induced pluripotent stem cell-derived microglia-like cells harboring TREM2 missense mutations show specific deficits in phagocytosis. Cell Rep. 24, 2300–2311, https://doi.org/10.1016/j.celrep.2018.07.094
Cosker, K., Mallach, A., Limaye, J., Piers, T.M., Staddon, J., Neame, S.J. et al. (2021) Microglial signalling pathway deficits associated with the patient derived R47H TREM2 variants linked to AD indicate inability to activate inflammasome. Sci. Rep. 11, 13316, https://doi.org/10.1038/s41598-021-91207-1
Zhao, L. (2019) CD33 in Alzheimer’s disease - biology, pathogenesis, and therapeutics: a mini-review. Gerontology 65, 323–331, https://doi.org/10.1159/000492596
Basiorka, A.A., McGraw, K.L., Eksioglu, E.A., Chen, X., Johnson, J., Zhang, L. et al. (2016) The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood 128, 2960–2975, https://doi.org/10.1182/blood-2016-07-730556
Yamazaki, Y., Zhao, N., Caulfield, T.R., Liu, C.-C. and Bu, G. (2019) Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518, https://doi.org/10.1038/s41582-019-0228-7
Wong, M.Y., Lewis, M., Doherty, J.J., Shi, Y., Cashikar, A.G., Amelianchik, A. et al. (2020) 25-Hydroxycholesterol amplifies microglial IL-1β production in an apoE isoform-dependent manner. J. Neuroinflammation 17, 192, https://doi.org/10.1186/s12974-020-01869-3
Couturier, J., Stancu, I.-C., Schakman, O., Pierrot, N., Huaux, F., Kienlen-Campard, P. et al. (2016) Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J. Neuroinflammation 13, 20, https://doi.org/10.1186/s12974-016-0477-y
Tejera, D., Mercan, D., Sanchez-Caro, J.M., Hanan, M., Greenberg, D., Soreq, H. et al. (2019) Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J. 38, e101064, https://doi.org/10.15252/embj.2018101064
Martin, E., Amar, M., Dalle, C., Youssef, I., Boucher, C., Le Duigou, C. et al. (2019) New role of P2X7 receptor in an Alzheimer’s disease mouse model. Mol. Psychiatry 24, 108–125, https://doi.org/10.1038/s41380-018-0108-3
Lonnemann, N., Hosseini, S., Marchetti, C., Skouras, D.B., Stefanoni, D., D’Alessandro, A. et al. (2020) The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 117, 32145–32154, https://doi.org/10.1073/pnas.2009680117
Yin, J., Zhao, F., Chojnacki, J.E., Fulp, J., Klein, W.L., Zhang, S. et al. (2018) NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurobiol. 55, 1977–1987, https://doi.org/10.1007/s12035-017-0467-9
Ruan, Y., Qiu, X., Lv, Y.-D., Dong, D., Wu, X.-J., Zhu, J. et al. (2019) Kainic acid Induces production and aggregation of amyloid β-protein and memory deficits by activating inflammasomes in NLRP3- and NF-κB-stimulated pathways. Aging (Albany N.Y.) 11, 3795–3810, https://doi.org/10.18632/aging.102017
Shippy, D.C., Wilhelm, C., Viharkumar, P.A., Raife, T.J. and Ulland, T.K. (2020) β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology. J. Neuroinflammation 17, 280, https://doi.org/10.1186/s12974-020-01948-5
Han, S., He, Z., Jacob, C., Hu, X., Liang, X., Xiao, W. et al. (2021) Effect of increased IL-1β on expression of HK in Alzheimer’s disease. Int. J. Mol. Sci. 22, 1306, https://doi.org/10.3390/ijms22031306
Cheng, L. and Zhang, W. (2021) DJ-1 affects oxidative stress and pyroptosis in hippocampal neurons of Alzheimer’s disease mouse model by regulating the Nrf2 pathway. Exp. Ther. Med. 21, 557, https://doi.org/10.3892/etm.2021.9989
Park, M.H., Lee, M., Nam, G., Kim, M., Kang, J., Choi, B.J. et al. (2019) N,N-diacetyl-p-phenylenediamine restores microglial phagocytosis and improves cognitive defects in Alzheimer’s disease transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 116, 23426–23436, https://doi.org/10.1073/pnas.1916318116
Rivers-Auty, J., Tapia, V.S., White, C.S., Daniels, M.J.D., Drinkall, S., Kennedy, P.T. et al. (2021) Zinc status alters Alzheimer’s disease progression through NLRP3-dependent inflammation. J. Neurosci. 41, 3025–3038, https://doi.org/10.1523/JNEUROSCI.1980-20.2020
Zhou, W., Xiao, D., Zhao, Y., Tan, B., Long, Z., Yu, L. et al. (2021) Enhanced autolysosomal function ameliorates the inflammatory response mediated by the NLRP3 inflammasome in Alzheimer’s disease. Front. Aging Neurosci. 13, 629891, https://doi.org/10.3389/fnagi.2021.629891
Chen, J., Sun, J., Hu, Y., Wan, X., Wang, Y., Gao, M. et al. (2021) MicroRNA-191-5p ameliorates amyloid-β1-40-mediated retinal pigment epithelium cell injury by suppressing the NLRP3 inflammasome pathway. FASEB J. 35, e21184
Silva, D.F., Candeias, E., Esteves, A.R., Magalhães, J.D., Ferreira, I.L., Nunes-Costa, D. et al. (2020) Microbial BMAA elicits mitochondrial dysfunction, innate immunity activation, and Alzheimer’s disease features in cortical neurons. J. Neuroinflammation 17, 332, https://doi.org/10.1186/s12974-020-02004-y
Ebrahimi, T., Rust, M., Kaiser, S.N., Slowik, A., Beyer, C., Koczulla, A.R. et al. (2018) α1-antitrypsin mitigates NLRP3-inflammasome activation in amyloid β1-42-stimulated murine astrocytes. J. Neuroinflammation 15, 282, https://doi.org/10.1186/s12974-018-1319-x
Friker, L.L., Scheiblich, H., Hochheiser, I.V., Brinkschulte, R., Riedel, D., Latz, E. et al. (2020) β-amyloid clustering around ASC fibrils boosts its toxicity in microglia. Cell Rep. 30, 3743.e6–3754.e6, https://doi.org/10.1016/j.celrep.2020.02.025
Wang, H.-M., Zhang, T., Huang, J.-K., Xiang, J.-Y., Chen, J.-J., Fu, J.-L. et al. (2017) Edaravone attenuates the proinflammatory response in amyloid-β-treated microglia by inhibiting NLRP3 inflammasome-mediated IL-1β secretion. Cell Physiol. Biochem. 43, 1113–1125, https://doi.org/10.1159/000481753
Ahmed, M.E., Iyer, S., Thangavel, R., Kempuraj, D., Selvakumar, G.P., Raikwar, S.P. et al. (2017) Co-localization of glia maturation factor with NLRP3 inflammasome and autophagosome markers in human Alzheimer’s disease brain. J. Alzheimers Dis. 60, 1143–1160, https://doi.org/10.3233/JAD-170634
Hishimoto, A., Pletnikova, O., Lang, D.L., Troncoso, J.C., Egan, J.M. and Liu, Q.-R. (2019) Neurexin 3 transmembrane and soluble isoform expression and splicing haplotype are associated with neuron inflammasome and Alzheimer’s disease. Alzheimers Res. Ther. 11, 28, https://doi.org/10.1186/s13195-019-0475-2
Mancuso, R., Agostini, S., Hernis, A., Zanzottera, M., Bianchi, A. and Clerici, M. (2019) Circulatory miR-223-3p discriminates between Parkinson’s and Alzheimer’s patients. Sci. Rep. 9, 9393, https://doi.org/10.1038/s41598-019-45687-x
Atluri, V.S.R., Tiwari, S., Rodriguez, M., Kaushik, A., Yndart, A., Kolishetti, N. et al. (2019) Inhibition of amyloid-beta production, associated neuroinflammation, and histone deacetylase 2-mediated epigenetic modifications prevent neuropathology in Alzheimer’s disease in vitro model. Front. Aging Neurosci. 11, 342, https://doi.org/10.3389/fnagi.2019.00342
Karabiyik, C., Lee, M.J. and Rubinsztein, D.C. (2017) Autophagy impairment in Parkinson’s disease. Essays Biochem. 61, 711–720, https://doi.org/10.1042/EBC20170023
Jankovic, J. and Tan, E.K. (2020) Parkinson’s disease: etiopathogenesis and treatment. J Neurol. Neurosurg. Psychiatry 91, 795–808, https://doi.org/10.1136/jnnp-2019-322338
Aarsland, D., Batzu, L., Halliday, G.M., Geurtsen, G.J., Ballard, C., Ray Chaudhuri, K. et al. (2021) Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 7, 47, https://doi.org/10.1038/s41572-021-00280-3
Panicker, N., Sarkar, S., Harischandra, D.S., Neal, M., Kam, T.-I., Jin, H. et al. (2019) Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. J. Exp. Med. 216, 1411–1430, https://doi.org/10.1084/jem.20182191
Trudler, D., Nazor, K.L., Eisele, Y.S., Grabauskas, T., Dolatabadi, N., Parker, J. et al. (2021) Soluble α-synuclein-antibody complexes activate the NLRP3 inflammasome in hiPSC-derived microglia. Proc. Natl. Acad. Sci. U.S.A. 118, e2025847118, https://doi.org/10.1073/pnas.2025847118
Scheiblich, H., Bousset, L., Schwartz, S., Griep, A., Latz, E., Melki, R. et al. (2021) Microglial NLRP3 inflammasome activation upon TLR2 and TLR5 ligation by distinct α-synuclein assemblies. J. Immunol., https://doi.org/10.4049/jimmunol.2100035
Billingsley, K.J., Bandres-Ciga, S., Saez-Atienzar, S. and Singleton, A.B. (2018) Genetic risk factors in Parkinson’s disease. Cell Tissue Res. 373, 9–20, https://doi.org/10.1007/s00441-018-2817-y
Ji, Y.-J., Wang, H.-L., Yin, B.-L. and Ren, X.-Y. (2020) Down-regulation of DJ-1 augments neuroinflammation via Nrf2/Trx1/NLRP3 axis in MPTP-induced Parkinson’s disease mouse model. Neuroscience 442, 253–263, https://doi.org/10.1016/j.neuroscience.2020.06.001
Chia, R., Sabir, M.S., Bandres-Ciga, S., Saez-Atienzar, S., Reynolds, R.H., Gustavsson, E. et al. (2021) Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat. Genet. 53, 294–303, https://doi.org/10.1038/s41588-021-00785-3
Lee, E., Hwang, I., Park, S., Hong, S., Hwang, B., Cho, Y. et al. (2019) MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 26, 213–228, https://doi.org/10.1038/s41418-018-0124-5
Chen, Y., Zhang, Q., Shao, Q., Wang, S., Yuan, Y., Chen, N. et al. (2019) NLRP3 inflammasome pathway is involved in olfactory bulb pathological alteration induced by MPTP. Acta Pharmacol. Sin. 40, 991–998, https://doi.org/10.1038/s41401-018-0209-1
Rui, W., Li, S., Xiao, H., Xiao, M. and Shi, J. (2020) Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP induced mice model of Parkinson’s disease. Int. J. Neuropsychopharmacol. 23, 762–773, https://doi.org/10.1093/ijnp/pyaa060
Langston, J.W. (2017) The MPTP story. J. Parkinsons Dis. 7, S11–S19, https://doi.org/10.3233/JPD-179006
Sarkar, S., Malovic, E., Harishchandra, D.S., Ghaisas, S., Panicker, N., Charli, A. et al. (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Park Dis. 3, 30, https://doi.org/10.1038/s41531-017-0032-2
Siracusa, R., Scuto, M., Fusco, R., Trovato, A., Ontario, M.L., Crea, R. et al. (2020) Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinson’s disease in mice. Antioxidants 9, 824, https://doi.org/10.3390/antiox9090824
Hou, L., Qu, X., Qiu, X., Huang, R., Zhao, X. and Wang, Q. (2020) Integrin CD11b mediates locus coeruleus noradrenergic neurodegeneration in a mouse Parkinson’s disease model. J Neuroinflammation 17, 148, https://doi.org/10.1186/s12974-020-01823-3
Shao, Q., Chen, Y., Li, F., Wang, S., Zhang, X., Yuan, Y. et al. (2019) TLR4 deficiency has a protective effect in the MPTP/probenecid mouse model of Parkinson’s disease. Acta Pharmacol. Sin. 40, 1503–1512, https://doi.org/10.1038/s41401-019-0280-2
Han, X., Sun, S., Sun, Y., Song, Q., Zhu, J., Song, N. et al. (2019) Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy 15, 1860–1881, https://doi.org/10.1080/15548627.2019.1596481
Li, Q., Wang, Z., Xing, H., Wang, Y. and Guo, Y. (2021) Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson’s disease. Mol. Ther. Nucleic Acids 23, 1334–1344, https://doi.org/10.1016/j.omtn.2021.01.022
Kwon, O.-C., Song, J.-J., Yang, Y., Kim, S.-H., Kim, J.Y., Seok, M.-J. et al. (2021) SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol. Med. 13, e13076, https://doi.org/10.15252/emmm.202013076
Qiao, C., Zhang, Q., Jiang, Q., Zhang, T., Chen, M., Fan, Y. et al. (2018) Inhibition of the hepatic Nlrp3 protects dopaminergic neurons via attenuating systemic inflammation in a MPTP/p mouse model of Parkinson’s disease. J. Neuroinflammation 15, 193, https://doi.org/10.1186/s12974-018-1236-z
Gordon, R., Albornoz, E.A., Christie, D.C., Langley, M.R., Kumar, V., Mantovani, S. et al. (2018) Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci. Transl. Med. 10, eaah4066, https://doi.org/10.1126/scitranslmed.aah4066
Huang, S., Chen, Z., Fan, B., Chen, Y., Zhou, L., Jiang, B. et al. (2021) A selective NLRP3 inflammasome inhibitor attenuates behavioral deficits and neuroinflammation in a mouse model of Parkinson’s disease. J. Neuroimmunol. 354, 577543, https://doi.org/10.1016/j.jneuroim.2021.577543
Liu, W., Liu, X., Li, Y., Zhao, J., Liu, Z., Hu, Z. et al. (2017) LRRK2 promotes the activation of NLRC4 inflammasome during Salmonella typhimurium infection. J. Exp. Med. 214, 3051–3066, https://doi.org/10.1084/jem.20170014
Xu, Y., Tang, Y., Lu, J., Zhang, W., Zhu, Y., Zhang, S. et al. (2020) PINK1-mediated mitophagy protects against hepatic ischemia/reperfusion injury by restraining NLRP3 inflammasome activation. Free Radic. Biol. Med. 160, 871–886, https://doi.org/10.1016/j.freeradbiomed.2020.09.015
Codolo, G., Plotegher, N., Pozzobon, T., Brucale, M., Tessari, I., Bubacco, L. et al. (2013) Triggering of inflammasome by aggregated α-Synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8, e55375, https://doi.org/10.1371/journal.pone.0055375
von Herrmann, K.M., Salas, L.A., Martinez, E.M., Young, A.L., Howard, J.M., Feldman, M.S. et al. (2018) NLRP3 expression in mesencephalic neurons and characterization of a rare NLRP3 polymorphism associated with decreased risk of Parkinson’s disease. NPJ Park Dis. 4, 24, https://doi.org/10.1038/s41531-018-0061-5
Qiao, C., Yin, N., Gu, H.-Y., Zhu, J.-L., Ding, J.-H., Lu, M. et al. (2016) Atp13a2 deficiency aggravates astrocyte-mediated neuroinflammation via NLRP3 inflammasome activation. CNS Neurosci. Ther. 22, 451–460, https://doi.org/10.1111/cns.12514
Martinez, E.M., Young, A.L., Patankar, Y.R., Berwin, B.L., Wang, L., von Herrmann, K.M. et al. (2017) Editor’s highlight: Nlrp3 is required for inflammatory changes and nigral cell loss resulting from chronic intragastric rotenone exposure in mice. Toxicol. Sci. 159, 64–75, https://doi.org/10.1093/toxsci/kfx117
Anderson, F.L., von Herrmann, K.M., Andrew, A.S., Kuras, Y.I., Young, A.L., Scherzer, C.R. et al. (2021) Plasma-borne indicators of inflammasome activity in Parkinson’s disease patients. NPJ Park Dis. 7, 2
Apolloni, S., Amadio, S., Parisi, C., Matteucci, A., Potenza, R.L., Armida, M. et al. (2014) Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis. Dis. Model Mech. 7, 1101–1109, https://doi.org/10.1242/dmm.017038
Bartlett, R., Sluyter, V., Watson, D., Sluyter, R. and Yerbury, J.J. (2017) P2X7 antagonism using Brilliant Blue G reduces body weight loss and prolongs survival in female SOD1(G93A) amyotrophic lateral sclerosis mice. PeerJ 5, e3064, https://doi.org/10.7717/peerj.3064
Heitzer, M., Kaiser, S., Kanagaratnam, M., Zendedel, A., Hartmann, P., Beyer, C. et al. (2017) Administration of 17β-estradiol improves motoneuron survival and down-regulates inflammasome activation in male SOD1(G93A) ALS mice. Mol. Neurobiol. 54, 8429–8443, https://doi.org/10.1007/s12035-016-0322-4
Moreno-García, L., Miana-Mena, F.J., Moreno-Martínez, L., de la Torre, M., Lunetta, C., Tarlarini, C. et al. (2021) inflammasome in ALS skeletal muscle: NLRP3 as a potential biomarker. Int. J. Mol. Sci. 22, 2523, https://doi.org/10.3390/ijms22052523
Johann, S., Heitzer, M., Kanagaratnam, M., Goswami, A., Rizo, T., Weis, J. et al. (2015) NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia 63, 2260–2273, https://doi.org/10.1002/glia.22891
Deora, V., Lee, J.D., Albornoz, E.A., McAlary, L., Jagaraj, C.J., Robertson, A.A.B. et al. (2020) The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia 68, 407–421, https://doi.org/10.1002/glia.23728
Meissner, F., Molawi, K. and Zychlinsky, A. (2010) Mutant superoxide dismutase 1-induced IL-1β accelerates ALS pathogenesis. Proc. Natl. Acad. Sci. U.S.A. 107, 13046–13050, https://doi.org/10.1073/pnas.1002396107
Zhao, W., Beers, D.R., Bell, S., Wang, J., Wen, S., Baloh, R.H. et al. (2015) TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp. Neurol. 273, 24–35, https://doi.org/10.1016/j.expneurol.2015.07.019
Italiani, P., Carlesi, C., Giungato, P., Puxeddu, I., Borroni, B., Bossù, P. et al. (2014) Evaluating the levels of interleukin-1 family cytokines in sporadic amyotrophic lateral sclerosis. J. Neuroinflammation 11, 94, https://doi.org/10.1186/1742-2094-11-94
Maier, A., Deigendesch, N., Müller, K., Weishaupt, J.H., Krannich, A., Röhle, R. et al. (2015) Interleukin-1 antagonist anakinra in amyotrophic lateral sclerosis–a pilot study. PLoS ONE 10, e0139684, https://doi.org/10.1371/journal.pone.0139684
Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E.M., Logroscino, G., Robberecht, W. et al. (2017) Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 3, 17071, https://doi.org/10.1038/nrdp.2017.71
Masrori, P. and Van Damme, P. (2020) Amyotrophic lateral sclerosis: a clinical review. Eur. J. Neurol. 27, 1918–1929, https://doi.org/10.1111/ene.14393
Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T. et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133, https://doi.org/10.1126/science.1134108
Higgins, C.M.J., Jung, C. and Xu, Z. (2003) ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci. 4, 16, https://doi.org/10.1186/1471-2202-4-16
Wang, W., Wang, L., Lu, J., Siedlak, S.L., Fujioka, H., Liang, J. et al. (2016) The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 22, 869–878, https://doi.org/10.1038/nm.4130
Bettcher, B.M., Tansey, M.G., Dorothée, G. and Heneka, M.T. (2021) Peripheral and central immune system crosstalk in Alzheimer disease - a research prospectus. Nat. Rev. Neurol. 17, 689–701, https://doi.org/10.1038/s41582-021-00549-x