Article (Périodiques scientifiques)
Multi-label image classification using adaptive graph convolutional networks: From a single domain to multiple domains
SINGH, Inder Pal; GHORBEL, Enjie; OYEDOTUN, Oyebade et al.
2024In Computer Vision and Image Understanding, 247, p. 104062
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
1-s2.0-S1077314224001437-main.pdf
Postprint Auteur (2.86 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer vision; Deep learning; Domain shift; Graph Convolutional Networks; Machine learning; Multi-label image classification; Unsupervised domain adaptation; Convolutional networks; Domain adaptation; Graph convolutional network; Images classification; Label images; Machine-learning; Multi-labels; Software; Signal Processing; Computer Vision and Pattern Recognition
Résumé :
[en] This paper proposes an adaptive graph-based approach for multi-label image classification. Graph-based methods have been largely exploited in the field of multi-label classification, given their ability to model label correlations. Specifically, their effectiveness has been proven not only when considering a single domain but also when taking into account multiple domains. However, the topology of the used graph is not optimal as it is pre-defined heuristically. In addition, consecutive Graph Convolutional Network (GCN) aggregations tend to destroy the feature similarity. To overcome these issues, an architecture for learning the graph connectivity in an end-to-end fashion is introduced. This is done by integrating an attention-based mechanism and a similarity-preserving strategy. The proposed framework is then extended to multiple domains using an adversarial training scheme. Numerous experiments are reported on well-known single-domain and multi-domain benchmarks. The results demonstrate that our approach achieves competitive results in terms of mean Average Precision (mAP) and model size as compared to the state-of-the-art. The code will be made publicly available.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SINGH, Inder Pal  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
GHORBEL, Enjie  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > CVI2 > Team Djamila AOUADA ; Cristal Laboratory, National School of Computer Sciences, University of Manouba, Tunisia
OYEDOTUN, Oyebade  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > CVI2 > Team Djamila AOUADA
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Multi-label image classification using adaptive graph convolutional networks: From a single domain to multiple domains
Date de publication/diffusion :
13 juillet 2024
Titre du périodique :
Computer Vision and Image Understanding
ISSN :
1077-3142
eISSN :
1090-235X
Maison d'édition :
Academic Press Inc.
Volume/Tome :
247
Pagination :
104062
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR14755859 - Multi-modal Fusion Of Electro-optical Sensors For Spacecraft Pose Estimation Towards Autonomous In-orbit Operations, 2020 (01/01/2021-31/12/2023) - Djamila Aouada
Disponible sur ORBilu :
depuis le 22 juillet 2024

Statistiques


Nombre de vues
153 (dont 18 Unilu)
Nombre de téléchargements
74 (dont 7 Unilu)

citations Scopus®
 
12
citations Scopus®
sans auto-citations
12
OpenCitations
 
0
citations OpenAlex
 
12

Bibliographie


Publications similaires



Contacter ORBilu