![]() ![]() | SINGH, I. P., GHORBEL, E., OYEDOTUN, O., & AOUADA, D. (13 July 2024). Multi-label image classification using adaptive graph convolutional networks: From a single domain to multiple domains. Computer Vision and Image Understanding, 247, 104062. doi:10.1016/j.cviu.2024.104062 ![]() |
![]() ![]() | OYEDOTUN, O., & AOUADA, D. (22 May 2022). A CLOSER LOOK AT AUTOENCODERS FOR UNSUPERVISED ANOMALY DETECTION [Poster presentation]. 2022 IEEE International Conference on Acoustics, Speech, & Signal Processing (ICASSP). |
![]() ![]() | SINGH, I. P., OYEDOTUN, O., GHORBEL, E., & AOUADA, D. (2022). IML-GCN: Improved Multi-Label Graph Convolutional Network for Efficient yet Precise Image Classification. AAAI-22 Workshop Program-Deep Learning on Graphs: Methods and Applications. ![]() |
![]() ![]() | SINGH, I. P., GHORBEL, E., OYEDOTUN, O., & AOUADA, D. (2022). MULTI LABEL IMAGE CLASSIFICATION USING ADAPTIVE GRAPH CONVOLUTIONAL NETWORKS (ML-AGCN). IEEE International Conference on Image Processing. ![]() |
![]() ![]() | OYEDOTUN, O., Al Ismaeil, K., & AOUADA, D. (2021). Why is Everyone Training Very Deep Neural Network with Skip Connections? IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2021.3131813 ![]() |
![]() ![]() | OYEDOTUN, O., AL ISMAEIL, K., & AOUADA, D. (2021). Training very deep neural networks: Rethinking the role of skip connections. Neurocomputing. doi:10.1016/j.neucom.2021.02.004 ![]() |
![]() ![]() | OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2021). Revisiting the Training of Very Deep Neural Networks without Skip Connections [Poster presentation]. IEEE 2020 International Conference on Pattern Recognition (ICPR). doi:10.1109/ICPR48806.2021.9412508 |
![]() ![]() | OYEDOTUN, O., & AOUADA, D. (18 November 2020). Why do Deep Neural Networks with Skip Connections and Concatenated Hidden Representations Work? [Poster presentation]. The 27th International Conference on Neural Information Processing (ICONIP2020). |
![]() ![]() | OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2020). Improved Highway Network Block for Training Very Deep Neural Networks. IEEE Access. doi:10.1109/ACCESS.2020.3026423 ![]() |
![]() ![]() | OYEDOTUN, O. (2020). Analyzing and Improving Very Deep Neural Networks: From Optimization, Generalization to Compression [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/44390 |
![]() ![]() | OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2020). Deep network compression with teacher latent subspace learning and LASSO. Applied Intelligence. doi:10.1007/s10489-020-01858-2 ![]() |
![]() ![]() | OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2020). GOING DEEPER WITH NEURAL NETWORKS WITHOUT SKIP CONNECTIONS. In IEEE International Conference on Image Processing (ICIP 2020), Abu Dhabi, UAE, Oct 25–28, 2020. ![]() |
![]() ![]() | OYEDOTUN, O., AOUADA, D., & OTTERSTEN, B. (2020). Structured Compression of Deep Neural Networks with Debiased Elastic Group LASSO. In IEEE 2020 Winter Conference on Applications of Computer Vision (WACV 20), Aspen, Colorado, US, March 2–5, 2020. ![]() |
![]() ![]() | PAPADOPOULOS, K., GHORBEL, E., OYEDOTUN, O., AOUADA, D., & OTTERSTEN, B. (2020). DeepVI: A Novel Framework for Learning Deep View-Invariant Human Action Representations using a Single RGB Camera. In IEEE International Conference on Automatic Face and Gesture Recognition, Buenos Aires 18-22 May 2020. ![]() |
![]() ![]() | OYEDOTUN, O., AOUADA, D., & OTTERSTEN, B. (14 May 2019). Learning to Fuse Latent Representations for Multimodal Data [Poster presentation]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom. |
![]() ![]() | OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2018). Highway Network Block with Gates Constraints for Training Very Deep Networks. In 2018 IEEE International Conference on Computer Vision and Pattern Recognition Workshop, June 18-22, 2018. ![]() |
![]() ![]() | OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2018). IMPROVING THE CAPACITY OF VERY DEEP NETWORKS WITH MAXOUT UNITS. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. ![]() |
![]() ![]() | OYEDOTUN, O., DEMISSE, G., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2017). Facial Expression Recognition via Joint Deep Learning of RGB-Depth Map Latent Representations. In 2017 IEEE International Conference on Computer Vision Workshop (ICCVW). doi:10.1109/ICCVW.2017.374 ![]() |
![]() ![]() | OYEDOTUN, O., & Khashman, A. (2017). Prototype Incorporated Emotional Neural Network (PI-EmNN). IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2017.2730179 ![]() |
![]() ![]() | OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2017). Training Very Deep Networks via Residual Learning with Stochastic Input Shortcut Connections. In 24th International Conference on Neural Information Processing, Guangzhou, China, November 14–18, 2017. ![]() |
![]() ![]() | SHABAYEK, A. E. R., BAPTISTA, R., PAPADOPOULOS, K., Demisse, G., OYEDOTUN, O., Antunes, M., AOUADA, D., OTTERSTEN, B., Anastassova, M., Boukallel, M., Panëels, S., Randall, G., André, M., Douchet, A., Bouilland, S., & Ortiz Fernandez, L. (2017). STARR - Decision SupporT and self-mAnagement system for stRoke survivoRs Vision based Rehabilitation System. In European Project Space on Networks, Systems and Technologies (pp. 69-80). SciTePress. doi:10.5220/0007902400690080 |