SINGH, I. P., GHORBEL, E., OYEDOTUN, O., & AOUADA, D. (13 July 2024). Multi-label image classification using adaptive graph convolutional networks: From a single domain to multiple domains. Computer Vision and Image Understanding, 247, 104062. doi:10.1016/j.cviu.2024.104062 Peer Reviewed verified by ORBi |
OYEDOTUN, O., & AOUADA, D. (22 May 2022). A CLOSER LOOK AT AUTOENCODERS FOR UNSUPERVISED ANOMALY DETECTION [Poster presentation]. 2022 IEEE International Conference on Acoustics, Speech, & Signal Processing (ICASSP). |
SINGH, I. P., OYEDOTUN, O., GHORBEL, E., & AOUADA, D. (2022). IML-GCN: Improved Multi-Label Graph Convolutional Network for Efficient yet Precise Image Classification. AAAI-22 Workshop Program-Deep Learning on Graphs: Methods and Applications. Peer reviewed |
SINGH, I. P., GHORBEL, E., OYEDOTUN, O., & AOUADA, D. (2022). MULTI LABEL IMAGE CLASSIFICATION USING ADAPTIVE GRAPH CONVOLUTIONAL NETWORKS (ML-AGCN). IEEE International Conference on Image Processing. Peer reviewed |
OYEDOTUN, O., Al Ismaeil, K., & AOUADA, D. (2021). Why is Everyone Training Very Deep Neural Network with Skip Connections? IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2021.3131813 Peer Reviewed verified by ORBi |
OYEDOTUN, O., AL ISMAEIL, K., & AOUADA, D. (2021). Training very deep neural networks: Rethinking the role of skip connections. Neurocomputing. doi:10.1016/j.neucom.2021.02.004 Peer Reviewed verified by ORBi |
OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2021). Revisiting the Training of Very Deep Neural Networks without Skip Connections [Poster presentation]. IEEE 2020 International Conference on Pattern Recognition (ICPR). doi:10.1109/ICPR48806.2021.9412508 |
OYEDOTUN, O., & AOUADA, D. (18 November 2020). Why do Deep Neural Networks with Skip Connections and Concatenated Hidden Representations Work? [Poster presentation]. The 27th International Conference on Neural Information Processing (ICONIP2020). |
OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2020). Improved Highway Network Block for Training Very Deep Neural Networks. IEEE Access. doi:10.1109/ACCESS.2020.3026423 Peer Reviewed verified by ORBi |
OYEDOTUN, O. (2020). Analyzing and Improving Very Deep Neural Networks: From Optimization, Generalization to Compression [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/44390 |
OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2020). Deep network compression with teacher latent subspace learning and LASSO. Applied Intelligence. doi:10.1007/s10489-020-01858-2 Peer Reviewed verified by ORBi |
OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2020). GOING DEEPER WITH NEURAL NETWORKS WITHOUT SKIP CONNECTIONS. In IEEE International Conference on Image Processing (ICIP 2020), Abu Dhabi, UAE, Oct 25–28, 2020. Peer reviewed |
OYEDOTUN, O., AOUADA, D., & OTTERSTEN, B. (2020). Structured Compression of Deep Neural Networks with Debiased Elastic Group LASSO. In IEEE 2020 Winter Conference on Applications of Computer Vision (WACV 20), Aspen, Colorado, US, March 2–5, 2020. Peer reviewed |
PAPADOPOULOS, K., GHORBEL, E., OYEDOTUN, O., AOUADA, D., & OTTERSTEN, B. (2020). DeepVI: A Novel Framework for Learning Deep View-Invariant Human Action Representations using a Single RGB Camera. In IEEE International Conference on Automatic Face and Gesture Recognition, Buenos Aires 18-22 May 2020. Peer reviewed |
OYEDOTUN, O., AOUADA, D., & OTTERSTEN, B. (14 May 2019). Learning to Fuse Latent Representations for Multimodal Data [Poster presentation]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom. |
OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2018). Highway Network Block with Gates Constraints for Training Very Deep Networks. In 2018 IEEE International Conference on Computer Vision and Pattern Recognition Workshop, June 18-22, 2018. Peer reviewed |
OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2018). IMPROVING THE CAPACITY OF VERY DEEP NETWORKS WITH MAXOUT UNITS. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Peer reviewed |
OYEDOTUN, O., DEMISSE, G., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2017). Facial Expression Recognition via Joint Deep Learning of RGB-Depth Map Latent Representations. In 2017 IEEE International Conference on Computer Vision Workshop (ICCVW). doi:10.1109/ICCVW.2017.374 Peer reviewed |
OYEDOTUN, O., & Khashman, A. (2017). Prototype Incorporated Emotional Neural Network (PI-EmNN). IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2017.2730179 Peer reviewed |
OYEDOTUN, O., SHABAYEK, A. E. R., AOUADA, D., & OTTERSTEN, B. (2017). Training Very Deep Networks via Residual Learning with Stochastic Input Shortcut Connections. In 24th International Conference on Neural Information Processing, Guangzhou, China, November 14–18, 2017. Peer reviewed |
SHABAYEK, A. E. R., BAPTISTA, R., PAPADOPOULOS, K., Demisse, G., OYEDOTUN, O., Antunes, M., AOUADA, D., OTTERSTEN, B., Anastassova, M., Boukallel, M., Panëels, S., Randall, G., André, M., Douchet, A., Bouilland, S., & Ortiz Fernandez, L. (2017). STARR - Decision SupporT and self-mAnagement system for stRoke survivoRs Vision based Rehabilitation System. In European Project Space on Networks, Systems and Technologies (pp. 69-80). SciTePress. doi:10.5220/0007902400690080 |