Thèse de doctorat (Mémoires et thèses)
Algebraic and coalgebraic modal logic: From Boolean algebras to semi-primal varieties
POIGER, Wolfgang
2024
 

Documents


Texte intégral
Wolfgang_Poiger_Thesis.pdf
Postprint Auteur (2.05 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
algebra, coalgebra, many-valued logic, modal logic
Résumé :
[en] We study many-valued variants of modal logic and, more generally, coalgebraic logic, under the assumption that the underlying algebra of truth-degrees is a semi-primal bounded lattice-expansion. Throwing light on the category theoretical relation between the variety generated by such an algebra and the variety of Boolean algebras, we describe multiple adjunctions between these varieties. In particular, we show that the Boolean skeleton functor has two adjoints, both defined by taking certain Boolean powers, and we identify properties of these adjunctions which fully characterize semi-primality of an algebra. Making use of these relations, we show how to lift endofunctors encoding classical coalgebraic logics in order to obtain many-valued counterparts of these logics. We show that one-step completeness, expressivity and finite axiomatizability are preserved under this lifting, and we show that for classical modal logic and similar cases, an axiomatization of the lifted many-valued logic can be directly obtained from an axiomatization of the original logic. Lastly, we develop the theory of natural dualities for varieties generated by finite positive MV-chains and apply this to the algebraic study of the negation-free fragment of bimodal finite Lukasiewicz logic.
Disciplines :
Mathématiques
Auteur, co-auteur :
POIGER, Wolfgang ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Langue du document :
Anglais
Titre :
Algebraic and coalgebraic modal logic: From Boolean algebras to semi-primal varieties
Date de soutenance :
28 juin 2024
Nombre de pages :
xii, 253
Institution :
Unilu - Université du Luxembourg [FSTM], Esch-sur-Alzette, Luxembourg
Intitulé du diplôme :
Docteur en Mathématiques (DIP_DOC_0004_B)
Promoteur :
TEHEUX, Bruno ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Président du jury :
MARICHAL, Jean-Luc ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Membre du jury :
Kurz, Alexander;  Chapman University > Fowler School of Engineering
Bílková, Marta;  CAS - Czech Academy of Sciences [CZ] > Institute of Computer Science
Bezhanishvili, Nick;  UvA - University of Amsterdam [NL] > Institute for Logic, Language and Computation
Projet FnR :
FNR12246620 - Geometry, Probability And Their Synergies, 2017 (01/01/2019-30/06/2025) - Hugo Parlier
Disponible sur ORBilu :
depuis le 18 juillet 2024

Statistiques


Nombre de vues
187 (dont 15 Unilu)
Nombre de téléchargements
190 (dont 6 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu