Cancer; Differentiation; Flow cytometry; Inhibitors; RASopathy; Ras; Protein Isoforms; ras Proteins; ras Proteins/metabolism; ras Proteins/genetics; Cell Line; Humans; Cell Differentiation; Mutation; Protein Isoforms/metabolism; Protein Isoforms/genetics; Cell Biology
Abstract :
[en] The RAS-MAPK-pathway is aberrantly regulated in cancer and developmental diseases called RASopathies. While typically the impact of Ras on the proliferation of various cancer cell lines is assessed, it is poorly established how Ras affects cellular differentiation. Here we implement the C2C12 myoblast cell line to systematically study the effect of Ras mutants and Ras-pathway drugs on differentiation. We first provide evidence that a minor pool of Pax7+ progenitors replenishes a major pool of transit amplifying cells that are ready to differentiate. Our data indicate that Ras isoforms have distinct roles in the differentiating culture, where K-Ras depletion increases and H-Ras depletion decreases terminal differentiation. This assay could therefore provide significant new insights into Ras biology and Ras-driven diseases. In line with this, we found that all oncogenic Ras mutants block terminal differentiation of transit amplifying cells. By contrast, RASopathy associated K-Ras variants were less able to block differentiation. Profiling of eight targeted Ras-pathway drugs on seven oncogenic Ras mutants revealed their allele-specific activities and distinct abilities to restore normal differentiation as compared to triggering cell death. In particular, the MEK-inhibitor trametinib could broadly restore differentiation, while the mTOR-inhibitor rapamycin broadly suppressed differentiation. We expect that this quantitative assessment of the impact of Ras-pathway mutants and drugs on cellular differentiation has great potential to complement cancer cell proliferation data.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
CHIPPALKATTI, Rohan ✱; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
PARISI, Bianca ✱; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Kouzi, Farah; Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
LAURINI, Christina ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Ben Fredj, Nesrine; Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
ABANKWA, Daniel ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
✱ These authors have contributed equally to this work.
External co-authors :
no
Language :
English
Title :
RAS isoform specific activities are disrupted by disease associated mutations during cell differentiation.
This work was supported by funds provided by the University of Luxembourg and a grant from the Luxembourg National Research Fund (FNR) grant C19/BM/13673303-PolaRAS2 to D.K.A.
Ahmadian, M.R., Stege, P., Scheffzek, K., Wittinghofer, A., Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat. Struct. Biol. 4 (1997), 686–689.
Altshuler, A., Verbuk, M., Bhattacharya, S., Abramovich, I., Haklai, R., Hanna, J.H., Kloog, Y., Gottlieb, E., Shalom-Feuerstein, R., RAS Regulates the Transition from Naive to Primed Pluripotent Stem Cells. Stem Cell Rep. 10 (2018), 1088–1101.
Ansieau, S., EMT in breast cancer stem cell generation. Cancer Lett. 338 (2013), 63–68.
Barbaric, I., Gokhale, P.J., Jones, M., Glen, A., Baker, D., Andrews, P.W., Novel regulators of stem cell fates identified by a multivariate phenotype screen of small compounds on human embryonic stem cell colonies. Stem Cell Res 5 (2010), 104–119.
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehar, J., Kryukov, G.V., Sonkin, D., Reddy, A., Liu, M., Murray, L., Berger, M.F., Monahan, J.E., Morais, P., Meltzer, J., Korejwa, A., Jane-Valbuena, J., Mapa, F.A., Thibault, J., Bric-Furlong, E., Raman, P., Shipway, A., Engels, I.H., Cheng, J., Yu, G.K., Yu, J., Aspesi, P. Jr., de Silva, M., Jagtap, K., Jones, M.D., Wang, L., Hatton, C., Palescandolo, E., Gupta, S., Mahan, S., Sougnez, C., Onofrio, R.C., Liefeld, T., MacConaill, L., Winckler, W., Reich, M., Li, N., Mesirov, J.P., Gabriel, S.B., Getz, G., Ardlie, K., Chan, V., Myer, V.E., Weber, B.L., Porter, J., Warmuth, M., Finan, P., Harris, J.L., Meyerson, M., Golub, T.R., Morrissey, M.P., Sellers, W.R., Schlegel, R., Garraway, L.A., The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483 (2012), 603–607.
Batlle, E., Clevers, H., Cancer stem cells revisited. Nat. Med 23 (2017), 1124–1134.
Bennett, A.M., Tonks, N.K., Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278 (1997), 1288–1291.
Brems, H., Pasmant, E., Van Minkelen, R., Wimmer, K., Upadhyaya, M., Legius, E., Messiaen, L., Review and update of SPRED1 mutations causing Legius syndrome. Hum. Mutat. 33 (2012), 1538–1546.
Brown, D.M., Parr, T., Brameld, J.M., Myosin heavy chain mRNA isoforms are expressed in two distinct cohorts during C2C12 myogenesis. J. Muscle Res Cell Motil. 32 (2012), 383–390.
Bustelo, X.R., Crespo, P., Fernandez-Pisonero, I., Rodriguez-Fdez, S., RAS GTPase-dependent pathways in developmental diseases: old guys, new lads, and current challenges. Curr. Opin. Cell Biol. 55 (2018), 42–51.
Canon, J., Rex, K., Saiki, A.Y., Mohr, C., Cooke, K., Bagal, D., Gaida, K., Holt, T., Knutson, C.G., Koppada, N., Lanman, B.A., Werner, J., Rapaport, A.S., San Miguel, T., Ortiz, R., Osgood, T., Sun, J.R., Zhu, X., McCarter, J.D., Volak, L.P., Houk, B.E., Fakih, M.G., O'Neil, B.H., Price, T.J., Falchook, G.S., Desai, J., Kuo, J., Govindan, R., Hong, D.S., Ouyang, W., Henary, H., Arvedson, T., Cee, V.J., Lipford, J.R., The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575 (2019), 217–223.
Castel, P., Rauen, K.A., McCormick, F., The duality of human oncoproteins: drivers of cancer and congenital disorders. Nat. Rev. Cancer 379 (2020), 1–15.
Chaffer, C.L., Weinberg, R.A., How does multistep tumorigenesis really proceed?. Cancer Discov. 5 (2015), 22–24.
Chen, T.H., Wang, Y.H., Wu, Y.H., Developmental exposures to ethanol or dimethylsulfoxide at low concentrations alter locomotor activity in larval zebrafish: implications for behavioral toxicity bioassays. Aquat. Toxicol. 102 (2011), 162–166.
Chia, W., Somers, W.G., Wang, H., Drosophila neuroblast asymmetric divisions: cell cycle regulators, asymmetric protein localization, and tumorigenesis. J. Cell Biol. 180 (2008), 267–272.
Chippalkatti, R., Abankwa, D., Promotion of cancer cell stemness by Ras. Biochem Soc. Trans. 49 (2021), 467–476.
Cirstea, I.C., Gremer, L., Dvorsky, R., Zhang, S.C., Piekorz, R.P., Zenker, M., Ahmadian, M.R., Diverging gain-of-function mechanisms of two novel KRAS mutations associated with Noonan and cardio-facio-cutaneous syndromes. Hum. Mol. Genet 22 (2013), 262–270.
Crespo, P., Leon, J., Ras proteins in the control of the cell cycle and cell differentiation. Cell Mol. Life Sci. 57 (2000), 1613–1636.
de Alvaro, C., Martinez, N., Rojas, J.M., Lorenzo, M., Sprouty-2 overexpression in C2C12 cells confers myogenic differentiation properties in the presence of FGF2. Mol. Biol. Cell 16 (2005), 4454–4461.
Desbordes, S.C., Placantonakis, D.G., Ciro, A., Socci, N.D., Lee, G., Djaballah, H., Studer, L., High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2 (2008), 602–612.
Dontu, G., Abdallah, W.M., Foley, J.M., Jackson, K.W., Clarke, M.F., Kawamura, M.J., Wicha, M.S., In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17 (2003), 1253–1270.
Dorman, C.M., Johnson, S.E., Activated Raf inhibits avian myogenesis through a MAPK-dependent mechanism. Oncogene 18 (1999), 5167–5176.
Esposito, D., Stephen, A.G., Turbyville, T.J., Holderfield, M., New weapons to penetrate the armor: Novel reagents and assays developed at the NCI RAS Initiative to enable discovery of RAS therapeutics. Semin Cancer Biol. 54 (2019), 174–182.
Feige, P., Brun, C.E., Ritso, M., Rudnicki, M.A., Orienting Muscle Stem Cells for Regeneration in Homeostasis, Aging, and Disease. Cell Stem Cell 23 (2018), 653–664.
Fell, J.B., Fischer, J.P., Baer, B.R., Blake, J.F., Bouhana, K., Briere, D.M., Brown, K.D., Burgess, L.E., Burns, A.C., Burkard, M.R., Chiang, H., Chicarelli, M.J., Cook, A.W., Gaudino, J.J., Hallin, J., Hanson, L., Hartley, D.P., Hicken, E.J., Hingorani, G.P., Hinklin, R.J., Mejia, M.J., Olson, P., Otten, J.N., Rhodes, S.P., Rodriguez, M.E., Savechenkov, P., Smith, D.J., Sudhakar, N., Sullivan, F.X., Tang, T.P., Vigers, G.P., Wollenberg, L., Christensen, J.G., Marx, M.A., Identification of the Clinical Development Candidate MRTX849, a Covalent KRAS(G12C) Inhibitor for the Treatment of Cancer. J. Med Chem. 63 (2020), 6679–6693.
Garcia-Espana, A., Philips, M.R., Origin and Evolution of RAS Membrane Targeting. Oncogene 42 (2023), 1741–1750.
Gebregiworgis, T., Kano, Y., St-Germain, J., Radulovich, N., Udaskin, M.L., Mentes, A., Huang, R., Poon, B.P.K., He, W., Valencia-Sama, I., Robinson, C.M., Huestis, M., Miao, J., Yeh, J.J., Zhang, Z.Y., Irwin, M.S., Lee, J.E., Tsao, M.S., Raught, B., Marshall, C.B., Ohh, M., Ikura, M., The Q61H mutation decouples KRAS from upstream regulation and renders cancer cells resistant to SHP2 inhibitors. Nat. Commun., 12, 2021, 6274.
Golebiewska, A., Brons, N.H., Bjerkvig, R., Niclou, S.P., Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8 (2011), 136–147.
Gomez-Lopez, S., Lerner, R.G., Petritsch, C., Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol. Life Sci. 71 (2014), 575–597.
Goto, H., Tomono, Y., Ajiro, K., Kosako, H., Fujita, M., Sakurai, M., Okawa, K., Iwamatsu, A., Okigaki, T., Takahashi, T., Inagaki, M., Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J. Biol. Chem. 274 (1999), 25543–25549.
Gremer, L., Merbitz-Zahradnik, T., Dvorsky, R., Cirstea, I.C., Kratz, C.P., Zenker, M., Wittinghofer, A., Ahmadian, M.R., Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum. Mutat. 32 (2011), 33–43.
Gross, A.M., Frone, M., Gripp, K.W., Gelb, B.D., Schoyer, L., Schill, L., Stronach, B., Biesecker, L.G., Esposito, D., Hernandez, E.R., Legius, E., Loh, M.L., Martin, S., Morrison, D.K., Rauen, K.A., Wolters, P.L., Zand, D., McCormick, F., Savage, S.A., Stewart, D.R., Widemann, B.C., Yohe, M.E., Advancing RAS/RASopathy therapies: An NCI-sponsored intramural and extramural collaboration for the study of RASopathies. Am. J. Med Genet A 182 (2020), 866–876.
Gupta, P.B., Onder, T.T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R.A., Lander, E.S., Identification of selective inhibitors of cancer stem cells by high-throughput screening., 138, 2009, 645–659.
Haghighi, F., Dahlmann, J., Nakhaei-Rad, S., Lang, A., Kutschka, I., Zenker, M., Kensah, G., Piekorz, R.P., Ahmadian, M.R., bFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling. Cell Commun. Signal, 16, 2018, 96.
Hanahan, D., Hallmarks of Cancer: New Dimensions. Cancer Discov. 12 (2022), 31–46.
Hatfield, I., Harvey, I., Yates, E.R., Redd, J.R., Reiter, L.T., Bridges, D., The role of TORC1 in muscle development in Drosophila. Sci. Rep., 5, 2015, 9676.
Ho, A.L., Brana, I., Haddad, R., Bauman, J., Bible, K., Oosting, S., Wong, D.J., Ahn, M.J., Boni, V., Even, C., Fayette, J., Flor, M.J., Harrington, K., Kim, S.B., Licitra, L., Nixon, I., Saba, N.F., Hackenberg, S., Specenier, P., Worden, F., Balsara, B., Leoni, M., Martell, B., Scholz, C., Gualberto, A., Tipifarnib in Head and Neck Squamous Cell Carcinoma With HRAS Mutations. J. Clin. Oncol. 39 (2021), 1856–1864.
Hobbs, G.A., Der, C.J., Rossman, K.L., RAS isoforms and mutations in cancer at a glance. J. Cell Sci. 129, 1287-1292, 2016.
Hofmann, M.H., Gmachl, M., Ramharter, J., Savarese, F., Gerlach, D., Marszalek, J.R., Sanderson, M.P., Kessler, D., Trapani, F., Arnhof, H., Rumpel, K., Botesteanu, D.A., Ettmayer, P., Gerstberger, T., Kofink, C., Wunberg, T., Zoephel, A., Fu, S.C., Teh, J.L., Bottcher, J., Pototschnig, N., Schachinger, F., Schipany, K., Lieb, S., Vellano, C.P., O'Connell, J.C., Mendes, R.L., Moll, J., Petronczki, M., Heffernan, T.P., Pearson, M., McConnell, D.B., Kraut, N., BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discov. 11 (2021), 142–157.
Hood, F.E., Sahraoui, Y.M., Jenkins, R.E., Prior, I.A., Ras protein abundance correlates with Ras isoform mutation patterns in cancer. Oncogene 42 (2023), 1224–1232.
Hunter, J.C., Manandhar, A., Carrasco, M.A., Gurbani, D., Gondi, S., Westover, K.D., Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations. Mol. Cancer Res 13 (2015), 1325–1335.
Janes, M.R., Zhang, J., Li, L.S., Hansen, R., Peters, U., Guo, X., Chen, Y., Babbar, A., Firdaus, S.J., Darjania, L., Feng, J., Chen, J.H., Li, S., Li, S., Long, Y.O., Thach, C., Liu, Y., Zarieh, A., Ely, T., Kucharski, J.M., Kessler, L.V., Wu, T., Yu, K., Wang, Y., Yao, Y., Deng, X., Zarrinkar, P.P., Brehmer, D., Dhanak, D., Lorenzi, M.V., Hu-Lowe, D., Patricelli, M.P., Ren, P., Liu, Y., Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell 172 (2018), 578–589 e517.
Jee, J., Jeon, H., Hwang, D., Sommer, P., Park, Z., Cechetto, J., Dorval, T., High content screening for compounds that induce early stages of human embryonic stem cell differentiation. Comb. Chem. High. Throughput Screen 15 (2012), 656–665.
Joseph, G.A., Wang, S.X., Jacobs, C.E., Zhou, W., Kimble, G.C., Tse, H.W., Eash, J.K., Shavlakadze, T., Glass, D.J., Partial Inhibition of mTORC1 in Aged Rats Counteracts the Decline in Muscle Mass and Reverses Molecular Signaling Associated with Sarcopenia. Mol. Cell Biol., 39, 2019.
Konieczny, S.F., Drobes, B.L., Menke, S.L., Taparowsky, E.J., Inhibition of myogenic differentiation by the H-ras oncogene is associated with the down regulation of the MyoD1 gene. Oncogene 4 (1989), 473–481.
Kovalski, J.R., Bhaduri, A., Zehnder, A.M., Neela, P.H., Che, Y., Wozniak, G.G., Khavari, P.A., The Functional Proximal Proteome of Oncogenic Ras Includes mTORC2. Mol. Cell 73 (2019), 830–844 e812.
Laplante, M., Sabatini, D.M., Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126, 1713-1719, 2013.
Lassar, A.B., Thayer, M.J., Overell, R.W., Weintraub, H., Transformation by activated ras or fos prevents myogenesis by inhibiting expression of MyoD1. Cell 58 (1989), 659–667.
Lau, H.Y., Ramanujulu, P.M., Guo, D., Yang, T., Wirawan, M., Casey, P.J., Go, M.L., Wang, M., An improved isoprenylcysteine carboxylmethyltransferase inhibitor induces cancer cell death and attenuates tumor growth in vivo. Cancer Biol. Ther. 15 (2014), 1280–1291.
Lee, J., Choi, K.J., Lim, M.J., Hong, F., Choi, T.G., Tak, E., Lee, S., Kim, Y.J., Chang, S.G., Cho, J.M., Ha, J., Kim, S.S., Proto-oncogenic H-Ras, K-Ras, and N-Ras are involved in muscle differentiation via phosphatidylinositol 3-kinase. Cell Res 20 (2010), 919–934.
Li, C., Vides, A., Kim, D., Xue, J.Y., Zhao, Y., Lito, P., The G protein signaling regulator RGS3 enhances the GTPase activity of KRAS. Science 374 (2021), 197–201.
Li, W., Ma, H., Zhang, J., Zhu, L., Wang, C., Yang, Y., Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci. Rep., 7, 2017, 13856.
Liu, J., Kang, R., Tang, D., The KRAS-G12C inhibitor: activity and resistance. Cancer Gene Ther. 29 (2022), 875–878.
Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (2001), 402–408.
Maeda, Y., Tidyman, W.E., Ander, B.P., Pritchard, C.A., Rauen, K.A., Ras/MAPK dysregulation in development causes a skeletal myopathy in an activating Braf(L597V) mouse model for cardio-facio-cutaneous syndrome. Dev. Dyn. 250 (2021), 1074–1095.
Mathews, L.A., Keller, J.M., Goodwin, B.L., Guha, R., Shinn, P., Mull, R., Thomas, C.J., de Kluyver, R.L., Sayers, T.J., Ferrer, M., A 1536-well quantitative high-throughput screen to identify compounds targeting cancer stem cells. J. Biomol. Screen 17 (2012), 1231–1242.
McDonald, E.R. 3rd, de Weck, A., Schlabach, M.R., Billy, E., Mavrakis, K.J., Hoffman, G.R., Belur, D., Castelletti, D., Frias, E., Gampa, K., Golji, J., Kao, I., Li, L., Megel, P., Perkins, T.A., Ramadan, N., Ruddy, D.A., Silver, S.J., Sovath, S., Stump, M., Weber, O., Widmer, R., Yu, J., Yu, K., Yue, Y., Abramowski, D., Ackley, E., Barrett, R., Berger, J., Bernard, J.L., Billig, R., Brachmann, S.M., Buxton, F., Caothien, R., Caushi, J.X., Chung, F.S., Cortes-Cros, M., deBeaumont, R.S., Delaunay, C., Desplat, A., Duong, W., Dwoske, D.A., Eldridge, R.S., Farsidjani, A., Feng, F., Feng, J., Flemming, D., Forrester, W., Galli, G.G., Gao, Z., Gauter, F., Gibaja, V., Haas, K., Hattenberger, M., Hood, T., Hurov, K.E., Jagani, Z., Jenal, M., Johnson, J.A., Jones, M.D., Kapoor, A., Korn, J., Liu, J., Liu, Q., Liu, S., Liu, Y., Loo, A.T., Macchi, K.J., Martin, T., McAllister, G., Meyer, A., Molle, S., Pagliarini, R.A., Phadke, T., Repko, B., Schouwey, T., Shanahan, F., Shen, Q., Stamm, C., Stephan, C., Stucke, V.M., Tiedt, R., Varadarajan, M., Venkatesan, K., Vitari, A.C., Wallroth, M., Weiler, J., Zhang, J., Mickanin, C., Myer, V.E., Porter, J.A., Lai, A., Bitter, H., Lees, E., Keen, N., Kauffmann, A., Stegmeier, F., Hofmann, F., Schmelzle, T., Sellers, W.R., Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell 170 (2017), 577–592 e510.
Moore, A.R., Rosenberg, S.C., McCormick, F., Malek, S., RAS-targeted therapies: is the undruggable drugged?. Nat. Rev. Drug Discov. 19 (2020), 533–552.
Morrison, S.J., Kimble, J., Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441 (2006), 1068–1074.
Mounier, R., Lantier, L., Leclerc, J., Sotiropoulos, A., Foretz, M., Viollet, B., Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle 10 (2011), 2640–2646.
Najumudeen, A.K., Jaiswal, A., Lectez, B., Oetken-Lindholm, C., Guzman, C., Siljamaki, E., Posada, I.M., Lacey, E., Aittokallio, T., Abankwa, D., Cancer stem cell drugs target K-ras signaling in a stemness context. Oncogene 35 (2016), 5248–5262.
Nassar, D., Blanpain, C., Cancer Stem Cells: Basic Concepts and Therapeutic Implications. Annu Rev. Pathol. 11 (2016), 47–76.
Norris, S.R., Nunez, M.F., Verhey, K.J., Influence of fluorescent tag on the motility properties of kinesin-1 in single-molecule assays. Biophys. J. 108 (2015), 1133–1143.
Okutachi, S., Manoharan, G.B., Kiriazis, A., Laurini, C., Catillon, M., McCormick, F., Yli-Kauhaluoma, J., Abankwa, D., A Covalent Calmodulin Inhibitor as a Tool to Study Cellular Mechanisms of K-Ras-Driven Stemness. Front Cell Dev. Biol., 9, 2021, 665673.
Olguin, H.C., Olwin, B.B., Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev. Biol. 275 (2004), 375–388.
Olson, E.N., Spizz, G., Tainsky, M.A., The oncogenic forms of N-ras or H-ras prevent skeletal myoblast differentiation. Mol. Cell Biol. 7 (1987), 2104–2111.
Pal, R., Mamidi, M.K., Das, A.K., Bhonde, R., Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch. Toxicol. 86 (2012), 651–661.
Parisi, B., Sunnen, M., Chippalkatti, R., Abankwa, D.K., A flow-cytometry-based pipeline for the rapid quantification of C2C12 cell differentiation. STAR Protoc., 4, 2023, 102637.
Pavic, K., Chippalkatti, R., Abankwa, D., Drug targeting opportunities en route to Ras nanoclusters. Adv. Cancer Res 153, 2022, 63–99.
Post, Y., Clevers, H., Defining Adult Stem Cell Function at Its Simplest: The Ability to Replace Lost Cells through Mitosis. Cell Stem Cell 25 (2019), 174–183.
Prior, I.A., Hood, F.E., Hartley, J.L., The Frequency of Ras Mutations in Cancer. Cancer Res 80 (2020), 2969–2974.
Punekar, S.R., Velcheti, V., Neel, B.G., Wong, K.K., The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. 19 (2022), 637–655.
Quinlan, M.P., Quatela, S.E., Philips, M.R., Settleman, J., Activated Kras, but not Hras or Nras, may initiate tumors of endodermal origin via stem cell expansion. Mol. Cell Biol. 28 (2008), 2659–2674.
Rabara, D., Tran, T.H., Dharmaiah, S., Stephens, R.M., McCormick, F., Simanshu, D.K., Holderfield, M., KRAS G13D sensitivity to neurofibromin-mediated GTP hydrolysis. Proc. Natl. Acad. Sci. USA 116 (2019), 22122–22131.
Rauen, K.A., The RASopathies. Annu Rev. Genom. Hum. Genet 14 (2013), 355–369.
Rommel, C., Clarke, B.A., Zimmermann, S., Nunez, L., Rossman, R., Reid, K., Moelling, K., Yancopoulos, G.D., Glass, D.J., Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286 (1999), 1738–1741.
Scheffzek, K., Ahmadian, M.R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F., Wittinghofer, A., The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277 (1997), 333–338.
Schmick, M., Kraemer, A., Bastiaens, P.I., Ras moves to stay in place. Trends Cell Biol. 25 (2015), 190–197.
Schubbert, S., Zenker, M., Rowe, S.L., Boll, S., Klein, C., Bollag, G., van der Burgt, I., Musante, L., Kalscheuer, V., Wehner, L.E., Nguyen, H., West, B., Zhang, K.Y., Sistermans, E., Rauch, A., Niemeyer, C.M., Shannon, K., Kratz, C.P., Germline KRAS mutations cause Noonan syndrome. Nat. Genet 38 (2006), 331–336.
She, X., Gao, Y., Zhao, Y., Yin, Y., Dong, Z., A high-throughput screen identifies inhibitors of lung cancer stem cells. Biomed. Pharm., 140, 2021, 111748.
Sherman, S.P., Pyle, A.D., Small molecule screening with laser cytometry can be used to identify pro-survival molecules in human embryonic stem cells. PLoS One, 8, 2013, e54948.
Shern, J.F., Chen, L., Chmielecki, J., Wei, J.S., Patidar, R., Rosenberg, M., Ambrogio, L., Auclair, D., Wang, J., Song, Y.K., Tolman, C., Hurd, L., Liao, H., Zhang, S., Bogen, D., Brohl, A.S., Sindiri, S., Catchpoole, D., Badgett, T., Getz, G., Mora, J., Anderson, J.R., Skapek, S.X., Barr, F.G., Meyerson, M., Hawkins, D.S., Khan, J., Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 4 (2014), 216–231.
Shu, L., Houghton, P.J., The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts. Mol. Cell Biol. 29 (2009), 4691–4700.
Siddiqui, F.A., Vukic, V., Salminen, T.A., Abankwa, D., Elaiophylin Is a Potent Hsp90/ Cdc37 Protein Interface Inhibitor with K-Ras Nanocluster Selectivity. Biomolecules, 11, 2021.
Siljamaki, E., Abankwa, D., SPRED1 Interferes with K-ras but Not H-ras Membrane Anchorage and Signaling. Mol. Cell Biol. 36 (2016), 2612–2625.
Simanshu, D.K., Nissley, D.V., McCormick, F., RAS Proteins and Their Regulators in Human Disease. Cell 170 (2017), 17–33.
Skoulidis, F., Li, B.T., Dy, G.K., Price, T.J., Falchook, G.S., Wolf, J., Italiano, A., Schuler, M., Borghaei, H., Barlesi, F., Kato, T., Curioni-Fontecedro, A., Sacher, A., Spira, A., Ramalingam, S.S., Takahashi, T., Besse, B., Anderson, A., Ang, A., Tran, Q., Mather, O., Henary, H., Ngarmchamnanrith, G., Friberg, G., Velcheti, V., Govindan, R., Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med 384 (2021), 2371–2381.
Steffen, C.L., Kaya, P., Schaffner-Reckinger, E., Abankwa, D., Eliminating oncogenic RAS: back to the future at the drawing board. Biochem Soc. Trans., 2023.
Velica, P., Bunce, C.M., A quick, simple and unbiased method to quantify C2C12 myogenic differentiation. Muscle Nerve 44 (2011), 366–370.
Wakioka, T., Sasaki, A., Kato, R., Shouda, T., Matsumoto, A., Miyoshi, K., Tsuneoka, M., Komiya, S., Baron, R., Yoshimura, A., Spred is a Sprouty-related suppressor of Ras signalling. Nature 412 (2001), 647–651.
Wall, V.E., Garvey, L.A., Mehalko, J.L., Procter, L.V., Esposito, D., Combinatorial assembly of clone libraries using site-specific recombination. Methods Mol. Biol. 1116, 2014, 193–208.
Wang, M.T., Holderfield, M., Galeas, J., Delrosario, R., To, M.D., Balmain, A., McCormick, F., K-Ras Promotes Tumorigenicity through Suppression of Non-canonical Wnt Signaling. Cell 163 (2015), 1237–1251.
Wang, X., Allen, S., Blake, J.F., Bowcut, V., Briere, D.M., Calinisan, A., Dahlke, J.R., Fell, J.B., Fischer, J.P., Gunn, R.J., Hallin, J., Laguer, J., Lawson, J.D., Medwid, J., Newhouse, B., Nguyen, P., O'Leary, J.M., Olson, P., Pajk, S., Rahbaek, L., Rodriguez, M., Smith, C.R., Tang, T.P., Thomas, N.C., Vanderpool, D., Vigers, G.P., Christensen, J.G., Marx, M.A., Identification of MRTX1133, a Noncovalent, Potent, and Selective KRAS(G12D) Inhibitor. J. Med Chem. 65 (2022), 3123–3133.
Weiswald, L.B., Bellet, D., Dangles-Marie, V., Spherical cancer models in tumor biology. Neoplasia 17 (2015), 1–15.
Weyman, C.M., Wolfman, A., Mitogen-activated protein kinase kinase (MEK) activity is required for inhibition of skeletal muscle differentiation by insulin-like growth factor 1 or fibroblast growth factor 2. Endocrinology 139 (1998), 1794–1800.
Whyte, D.B., Kirschmeier, P., Hockenberry, T.N., Nunez-Oliva, I., James, L., Catino, J.J., Bishop, W.R., Pai, J.K., K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272 (1997), 14459–14464.
Xu, Q., Wu, Z., The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J. Biol. Chem. 275 (2000), 36750–36757.
Yablonka-Reuveni, Z., Rivera, A.J., Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev. Biol. 164 (1994), 588–603.
Yan, W., Markegard, E., Dharmaiah, S., Urisman, A., Drew, M., Esposito, D., Scheffzek, K., Nissley, D.V., McCormick, F., Simanshu, D.K., Structural Insights into the SPRED1-Neurofibromin-KRAS Complex and Disruption of SPRED1-Neurofibromin Interaction by Oncogenic EGFR. Cell Rep., 32, 2020, 107909.
Yin, H., Price, F., Rudnicki, M.A., Satellite cells and the muscle stem cell niche. Physiol. Rev. 93 (2013), 23–67.
Yohe, M.E., Gryder, B.E., Shern, J.F., Song, Y.K., Chou, H.C., Sindiri, S., Mendoza, A., Patidar, R., Zhang, X., Guha, R., Butcher, D., Isanogle, K.A., Robinson, C.M., Luo, X., Chen, J.Q., Walton, A., Awasthi, P., Edmondson, E.F., Difilippantonio, S., Wei, J.S., Zhao, K., Ferrer, M., Thomas, C.J., Khan, J., MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma. Sci. Transl. Med, 10, 2018.
Yoon, M.S., mTOR as a Key regulator in maintaining skeletal muscle mass. Front Physiol., 8, 2017, 788.
Yoshida, N., Yoshida, S., Koishi, K., Masuda, K., Nabeshima, Y., Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates 'reserve cells. J. Cell Sci. 111:Pt 6 (1998), 769–779.
Zembruski, N.C., Stache, V., Haefeli, W.E., Weiss, J., 7-Aminoactinomycin D for apoptosis staining in flow cytometry. Anal. Biochem 429 (2012), 79–81.