Article (Périodiques scientifiques)
Pedestrian detection in low-light conditions: A comprehensive survey
Ghari, Bahareh; TOURANI, Ali; Shahbahrami, Asadollah et al.
2024In Image and Vision Computing, 148, p. 105106
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
pdsurvey.pdf
Postprint Éditeur (6.39 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Autonomous vehicles; Computer vision; Object detection; Pedestrian detection; Autonomous driving; Objects detection; Signal Processing; Computer Vision and Pattern Recognition; Computer Science - Computer Vision and Pattern Recognition
Résumé :
[en] Pedestrian detection remains a critical problem in various domains, such as computer vision, surveillance, and autonomous driving. In particular, accurate and instant detection of pedestrians in low-light conditions and reduced visibility is of utmost importance for autonomous vehicles to prevent accidents and save lives. This paper aims to comprehensively survey various pedestrian detection approaches, baselines, and datasets that specifically target low-light conditions. The survey discusses the challenges faced in detecting pedestrians at night and explores state-of-the-art methodologies proposed in recent years to address this issue. These methodologies encompass a diverse range, including deep learning-based, feature-based, and hybrid approaches, which have shown promising results in enhancing pedestrian detection performance under challenging lighting conditions. Furthermore, the paper highlights current research directions in the field and identifies potential solutions that merit further investigation by researchers. By thoroughly examining pedestrian detection techniques in low-light conditions, this survey seeks to contribute to the advancement of safer and more reliable autonomous driving systems and other applications related to pedestrian safety. Accordingly, most of the current approaches in the field use deep learning-based image fusion methodologies (i.e., early, halfway, and late fusion) for accurate and reliable pedestrian detection. Moreover, the majority of the works in the field (approximately 48%) have been evaluated on the KAIST dataset, while the real-world video feeds recorded by authors have been used in less than 6 % of the works.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > ARG - Automation & Robotics
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Ghari, Bahareh;  Department of Computer Engineering, University of Guilan, Rasht, Iran
TOURANI, Ali  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Automation
Shahbahrami, Asadollah;  Department of Computer Engineering, University of Guilan, Rasht, Iran
Gaydadjiev, Georgi;  Department of Quantum and Computer Engineering, Delft University of Technology, Delft, Netherlands
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Pedestrian detection in low-light conditions: A comprehensive survey
Date de publication/diffusion :
août 2024
Titre du périodique :
Image and Vision Computing
ISSN :
0262-8856
Maison d'édition :
Elsevier Ltd
Volume/Tome :
148
Pagination :
105106
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Commentaire :
23 pages, 3 tables, 10 figures
Disponible sur ORBilu :
depuis le 17 juillet 2024

Statistiques


Nombre de vues
268 (dont 3 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
33
citations Scopus®
sans auto-citations
32
OpenCitations
 
0
citations OpenAlex
 
39
citations WoS
 
25

Bibliographie


Publications similaires



Contacter ORBilu