2D lattice; Ab initio structure; Density-functional-theory; Excitonic properties; Many body perturbation theory; Vibrational properties; Materials Science (all); Condensed Matter Physics
Abstract :
[en] In this work, we introduce a 2D materials family with chemical formula MX2 (M={As, Sb, Bi} and X={S, Se, Te}) having a rectangular 2D lattice. This materials family has been predicted by systematic ab-initio structure search calculations in two dimensions. Using density-functional theory and many-body perturbation theory, we study the structural, vibrational, electronic, optical, and excitonic properties of the predicted MX2 family. Our calculations reveal that the predicted SbX2 and BiX2 monolayers are stable while the AsX 2 layers exhibit an in-plane ferroelectric instability. All materials display strong excitonic effects and good optical absorption within the infrared-to-visible range. Hence, these monolayers can harvest solar energy and serve in optoelectronics applications. Furthermore, our results indicate that exfoliation of the predicted MX2 monolayers from their bulk counterparts is experimentally viable.
Disciplines :
Physics
Author, co-author :
Mella, José D.; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile ; School of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
NALABOTHULA, Muralidhar ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Muñoz, Francisco ; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile ; Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
Rabe, Karin M.; Department of Physics and Astronomy, Rutgers University, Piscataway, United States
WIRTZ, Ludger ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Singh, Sobhit ; Department of Mechanical Engineering, University of Rochester, Rochester, United States ; Materials Science Program, University of Rochester, Rochester, United States
ROMERO, Aldo Humberto ; University of Luxembourg ; Department of Physics and Astronomy, West Virginia University, Morgantown, United States
External co-authors :
yes
Language :
English
Title :
Prediction of BiS2-type pnictogen dichalcogenide monolayers for optoelectronics
This research was funded in part, by the Luxembourg National Research Fund (FNR), Inter Mobility 2DOPMA, grant reference 15627293. For the purpose of open access, the authors have applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission. This work was also partially supported by Fondecyt Grants No. 1191353, 1231487, 1220715. J.D.M. was funded by the National Agency of Research and Development (ANID) through grants Fondecyt postdoctorado number 3200697 and Fondecyt regular number 1230747. F.M. was funded by the Center for the Development of Nanoscience and Nanotechnology CEDENNA AFB220001, and from Conicyt PIA/Anillo ACT192023. This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02). We also acknowledge the use of University of Luxembourg high-performance computing (ULHPC) and computational resources awarded by XSEDE, a project supported by National Science Foundation grant number ACI-1053575. The authors also acknowledge the support from the Texas Advances Computer Center (with the Stampede2 and Bridges supercomputers). We also acknowledge the Super Computing System (Thorny Flat) at WVU, which is funded in part by the National Science Foundation (NSF) Major Research Instrumentation Program (MRI) Award #1726534, and West Virginia University. AHR also recognizes the support of West Virginia Research under the call research challenge grand program 2022 and NASA EPSCoR Award 80NSSC22M0173. KMR acknowledges support from the Office of Naval Research Grant N00014-21-1-2107. SS was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Quantum Information Science program under Award Number DE-SC-0020340. SS also acknowledges support from the University Research Awards at the University of Rochester.
Novoselov, K. S. et al. Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin mos2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014).
Tan, T., Jiang, X., Wang, C., Yao, B. & Zhang, H. 2d material optoelectronics for information functional device applications: status and challenges. Adv. Sci. 7, 2000058 (2020).
Sangwan, V. K. & Hersam, M. C. Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 69, 299–325 (2018).
Akinwande, D. et al. A review on mechanics and mechanical properties of 2d materials-graphene and beyond. Extreme Mech. Lett. 13, 42–77 (2017).
Haastrup, S. et al. The computational 2d materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5, 042002 (2018).
Lyngby, P. & Thygesen, K. S. Data-driven discovery of 2D materials by deep generative models. npj Comput. Mater. 8, 232 (2022).
Zhou, J. et al. 2dmatpedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches. Sci. Data 6, 1–10 (2019).
Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).
Wang, H.-C., Schmidt, J., Marques, M. A. L., Wirtz, L. & Romero, A. H. Symmetry-based computational search for novel binary and ternary 2D materials. 2D Mater. 10, 035007 (2023).
Xiao, J., Zhao, M., Wang, Y. & Zhang, X. Excitons in atomically thin 2d semiconductors and their applications. Nanophotonics 6, 1309–1328 (2017).
Mueller, T. & Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. Npj 2D Mater. Appl. 2, 29 (2018).
Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).
Yamamoto, A., Hashizume, D., Bahramy, M. S. & Tokura, Y. Coexistence of monochalocogen and dichalocogen ions in bise2 and bis2 crystals prepared at high pressure. Inorg. Chem. 54, 4114–4119 (2015).
Kevy, S. M. et al. Investigation of the high pressure phase bis2: Temperature-resolved structure and compression behavior to 60 gpa. J. Alloys Compd. 789, 588–594 (2019).
Silverman, M. S. High pressure synthesis of new compounds–bismuth diselenide and bismuth monosulfide monoselenide. Inorg. Chem. 4, 587–588 (1965).
Hess, P. Bonding, structure, and mechanical stability of 2d materials: the predictive power of the periodic table. Nanoscale Horiz. 6, 856–892 (2021).
Eivari, H. A. et al. Two-dimensional hexagonal sheet of tio2. Chem. Mater. 29, 8594–8603 (2017).
Singh, S. et al. Low-energy phases of bi monolayer predicted by structure search in two dimensions. J. Phys. Chem. Lett. 10, 7324–7332 (2019).
Goedecker, S. Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911–9917 (2004).
Amsler, M. & Goedecker, S. Crystal structure prediction using the minima hopping method. J. Chem. Phys. 133, 224104 (2010).
Amsler, M. K. Crystal structure prediction based on density functional theory. Ph.D. thesis, University of Basel (2014).
Singh, S., Ibarra-Hernández, W., Valencia-Jaime, I., Avendaño-Franco, G. & Romero, A. H. Investigation of novel crystal structures of bi–sb binaries predicted using the minima hopping method. Phys. Chem. Chem. Phys. 18, 29771–29785 (2016).
Pavlic, O. et al. Design of mg alloys: the effects of li concentration on the structure and elastic properties in the mg-li binary system by first principles calculations. J. Alloys Compd. 691, 15–25 (2017).
Singh, S. K. Structural Prediction and Theoretical Characterization of Bi-Sb Binaries: Spin-Orbit Coupling Effects. Ph.D. thesis, West Virginia University (2018).
Maździarz, M. Comment on ‘the computational 2d materials database: high-throughput modeling and discovery of atomically thin crystals’. 2D Mater. 6, 048001 (2019).
Singh, S. et al. Mechelastic: a python library for analysis of mechanical and elastic properties of bulk and 2d materials. Comput. Phys. Commun. 267, 108068 (2021).
Singh, S. & Romero, A. H. Giant tunable rashba spin splitting in a two-dimensional bisb monolayer and in bisb/aln heterostructures. Phys. Rev. B 95, 165444 (2017).
Brazhkin, V. V., Dyuzheva, T. I. & Zibrov, I. P. New pressure-induced phase transitions in bismuthinite. JETP Lett. 114, 470–474 (2021).
Novoselov, K. et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451–10453 (2005).
Zhuang, H. L. & Hennig, R. G. Single-layer group-iii monochalcogenide photocatalysts for water splitting. Chem. Mater. 25, 3232–3238 (2013).
Singh, A. K., Mathew, K., Zhuang, H. L. & Hennig, R. G. Computational screening of 2d materials for photocatalysis. J. Phys. Chem. Lett. 6, 1087–1098 (2015).
Adapa, V., Ramakrishnan, A., Heinz, N. & Dinda, G. Microstructural evolution during laser metal deposition of bismuth chalcogenides (bi2se3 and bi2te3). J. Alloys Compd. 774, 509–514 (2019).
Sohier, T., Calandra, M. & Mauri, F. Density functional perturbation theory for gated two-dimensional heterostructures: theoretical developments and application to flexural phonons in graphene. Phys. Rev. B 96, 075448 (2017).
Sohier, T., Gibertini, M., Calandra, M., Mauri, F. & Marzari, N. Breakdown of optical phonons’ splitting in two-dimensional materials. Nano Lett. 17, 3758–3763 (2017).
Kruse, M. et al. Two-dimensional ferroelectrics from high throughput computational screening. Npj Comput. Mater. 9, 1–11 (2023).
Royo, M., Hahn, K. R. & Stengel, M. Using high multipolar orders to reconstruct the sound velocity in piezoelectrics from lattice dynamics. Phys. Rev. Lett. 125, 217602 (2020).
Royo, M. & Stengel, M. Exact long-range dielectric screening and interatomic force constants in quasi-two-dimensional crystals. Phys. Rev. X 11, 041027 (2021).
Molina-Sánchez, A., Hummer, K. & Wirtz, L. Vibrational and optical properties of MoS2: from monolayer to bulk. Surf. Sci. Rep. 70, 554–586 (2015).
Benedict, L. X., Shirley, E. L. & Bohn, R. B. Theory of optical absorption in diamond, si, ge, and gaas. Phys. Rev. B 57, R9385–R9387 (1998).
Sangalli, D. et al. Many-body perturbation theory calculations using the yambo code. J. Phys. Condens. Matter 31, 325902 (2019).
Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).
Kim, H., Uddin, S. Z., Higashitarumizu, N., Rabani, E. & Javey, A. Inhibited nonradiative decay at all exciton densities in monolayer semiconductors. Science 373, 448–452 (2021).
Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).
Tran, V., Fei, R. & Yang, L. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus. 2D Mater. 2, 044014 (2015).
Liu, H.-L. et al. Temperature-dependent optical constants of monolayer mos2, mose2, ws2, and wse2: spectroscopic ellipsometry and first-principles calculations. Sci. Rep. 10, 15282 (2020).
Choi, B. K. et al. Temperature dependence of band gap in mose2 grown by molecular beam epitaxy. Nanoscale Res. Lett. 12, 1–7 (2017).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
van Setten, M. et al. The pseudodojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Erratum: “hybrid functionals based on a screened coulomb potential" [j. chem. phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).
Herath, U. et al. Pyprocar: a python library for electronic structure pre/post-processing. Comput. Phys. Commun. 251, 107080 (2020).
Zhuang, H. L. & Hennig, R. G. Computational search for single-layer transition-metal dichalcogenide photocatalysts. J. Phys. Chem. C 117, 20440–20445 (2013).
Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).
Godby, R. W. & Needs, R. J. Metal-insulator transition in kohn-sham theory and quasiparticle theory. Phys. Rev. Lett. 62, 1169–1172 (1989).
Bruneval, F. & Gonze, X. Accurate GW self-energies in a plane-wave basis using only a few empty states: towards large systems. Phys. Rev. B 78, 085125 (2008).
Guandalini, A., D’Amico, P., Ferretti, A. & Varsano, D. Efficient gw calculations in two dimensional materials through a stochastic integration of the screened potential. npj Comput. Mater. 9, 44 (2023).
Hinuma, Y., Pizzi, G., Kumagai, Y., Oba, F. & Tanaka, I. Band structure diagram paths based on crystallography. Comput. Mater. Sci. 128, 140–184 (2017).