[en] Background: The hippocampus and its subfields (HippSub) are reported to be diminished in patients with Alzheimer's disease (AD), bipolar disorder (BD), and major depressive disorder (MDD). We examined these groups vs healthy controls (HC) to reveal HippSub alterations between diseases. Methods: We segmented 3T-MRI T2-weighted hippocampal images of 67 HC, 58 BD, and MDD patients from the AFFDIS study and 137 patients from the DELCODE study assessing cognitive decline, including subjective cognitive decline (SCD), amnestic mild cognitive impairment (aMCI), and AD, via Free Surfer 6.0 to compare volumes across groups. Results: Groups differed significantly in several HippSub volumes, particularly between patients with AD and mood disorders. In comparison to HC, significant lower volumes appear in aMCI and AD groups in specific subfields. Smaller volumes in the left presubiculum are detected in aMCI and AD patients, differing from the BD group. A significant linear regression is seen between left hippocampus volume and duration since the first depressive episode. Conclusions: HippSub volume alterations were observed in AD, but not in early-onset MDD and BD, reinforcing the notion of different neural mechanisms in hippocampal degeneration. Moreover, duration since the first depressive episode was a relevant factor explaining the lower left hippocampal volumes present in groups.
Disciplines :
Neurology
Author, co-author :
Hansen, Niels; Department of Psychiatry and Psychotherapy, Göttingen, Germany ; Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
Singh, Aditya; Department of Psychiatry and Psychotherapy, Göttingen, Germany ; Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
Bartels, Claudia; Department of Psychiatry and Psychotherapy, Göttingen, Germany
Brosseron, Frederic; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
Buerger, Katharina; German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany ; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
Cetindag, Arda C; Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany ; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
Dobisch, Laura; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
Dechent, Peter; MR-Research in Neurology and Psychiatry, University Medical Center Göttingen, Göttingen, Germany
Ertl-Wagner, Birgit B; Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
Fliessbach, Klaus; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
Haynes, John D; Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin, Berlin, Germany
HENEKA, Michael ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
Janowitz, Daniel; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
Kilimann, Ingo; German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany ; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
Laske, Christoph; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ; Section for Dementia Research, Hertie Institute for Clinical Brain Research, Tübingen, Germany ; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
Metzger, Coraline D; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany ; Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
Munk, Matthias H; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ; Section for Dementia Research, Hertie Institute for Clinical Brain Research, Tübingen, Germany ; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
Peters, Oliver; Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany ; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
Priller, Josef; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ; Department of Psychiatry and Psychotherapy, Berlin, Germany
Roy, Nina; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Scheffler, Klaus; Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
Schneider, Anja; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
Spottke, Annika; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Department of Neurology, University of Bonn, Bonn, Germany
Spruth, Eike J; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ; Department of Psychiatry and Psychotherapy, Berlin, Germany
Teipel, Stefan; German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany ; Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
Tscheuschler, Maike; Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
Vukovich, Ruth; Department of Psychiatry and Psychotherapy, Göttingen, Germany
Wiltfang, Jens; Department of Psychiatry and Psychotherapy, Göttingen, Germany ; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany ; Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
Duezel, Emrah; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
Jessen, Frank; Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany ; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
Goya-Maldonado, Roberto; Department of Psychiatry and Psychotherapy, Göttingen, Germany ; Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
This work was promoted by the University Medical Center Göttingen (UMG) and the German Federal Ministry of Education and Research (Bundesministerium fuer Bildung und Forschung, BMBF: 01 ZX 1507, PreNeSt—e:Med). We thank Christine Werner, Sören Noack, Maria Keil, Tracy Erwin-Grabner, Vladimir Belov, and Esther Semmelhack for their contribution to data collection and organization.ASc got funding from Novartis, Diagnostik Netz BB (travel and speaker honoraria) and gained research support from German Federal Ministry of Research (BMBF), Actelion and Helmholtz Foundation Michael J Fox Foundation. CB received honoraria as a diagnostic consultant for Boehringer Ingelheim. DJ has obtained funding for travel from Pfizer GmbH. IK has obtained funding from the German ministry of economic cooperation and development. JP got research support for travel or speaker honoraria from Axon, CHDI, and UK DRI. He received research funding from DFG, BMBF, and UK DRI. JW has obtained research support from the Eli Lilly Advisory Board, Pfizer, MSD, and med Update GmbH (travel and speaker honoraria). He obtained research support from the BMBF. MH received funding for research support from the DFG. OP has obtained research support for travel or speaker honoraria from Schwabe. He has received funding from Eli Lilly, Lundbeck, Genentech, Biogen, Roche, Pharmatrophix, Novartis, Janssen, and Probiodrug. ST has gained support (travel or speaker honoraria) from MSD Sharp and Dohme GmbH Quality circle for physicians in Kühlungsborn and research support from ROCHE, Roche Pharma AG, Lilly Deutschland GmbH, BMBF, and Ministry of Economics of the State Mecklenburg Western Pomerania.
Ang Y. S., Frontero N., Belleau E., Pizzagalli D. A., (2020). Disentangling vulnerability, state and trait features of neurocognitive impairments in depression. Brain 143, 3865–3877. 10.1093/brain/awaa31433176359
Ballmaier M., Narr K. L., Toga A. W., Elderkin-Thompson V., Thompson P. M., Hamilton L, et al. (2008). Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. Am. J. Psychiatry. 165, 229–237. 10.1176/appi.ajp.2007.0703050617986679
Berridge M. J., (2013). Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 7, 2–13. 10.4161/pri.2176722895098
Brown E. M., Pierce M. E., Clark D. C., Fischl B. R., Iglesias J. E., Milberg W. P., et al. (2020). Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners Neuroimage 210:116563. 10.1016/j.neuroimage.2020.11656331972281
Brzezińska A., Bourke J., Rivera-Hernández R, Tsolaki M., Wozniak J., Kazmierski J., (2020). Depression in dementia or dementia in depression? systematic review of studies and hypotheses. Curr. Alzheimer Res. (2020) 17, 16–28. 10.2174/156720501766620021710411432065103
Cao B., Passos I. C., Mwangi B., Amaral-Silva H., Tannous J., Wu M. J., (2017). Hippocampal subfield volumes in mood disorders. Mol. Psychiatry 22, 1352–1358. 10.1038/mp.2016.26229550609
Carlesimo G. A., Piras F., Orfei M. D., Iorio M., Caltagirone C., Spalletta G., (2015). Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer's disease. Alzheimers Dement (Amst). 1, 24–32. 10.1016/j.dadm.2014.12.00127239489
Cole J., Toga A. W., Hojatkashani C., Thompson P., Costafreda S. G., Cleare A. J., et al. (2010). Subregional hippocampal deformations in major depressive disorder. J. Affect. Disord. 126, 272–277. 10.1016/j.jad.2010.03.00420392498
Dale A. M., Fischl B., Sereno M. I., (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194. 10.1006/nimg.1998.03959931268
de Flores R., La Joie R., Chételat G., (2015). Structural imaging of hippocampal subfields in healthy aging and Alzheimer's disease. Neuroscience 309, 29–50. 10.1016/j.neuroscience.2015.08.03326306871
Donovan N. J., Locascio J. J., Marshall G. A., Gatchel J., Hanseeuw B. J., Rentz D. M., et al. (2018). Harvard aging brain study: longitudinal association of amyloid beta and anxious-depressive symptoms in cognitively normal older adults. Am. J. Psychiatry 175, 530–537. 10.1176/appi.ajp.2017.1704044229325447
Elvsåshagen T., Zuzarte P., Westlye L. T., Bøen E., Josefsen D., Boye B., et al. (2016). Dentate gyrus-cornu ammonis (CA) 4 volume is decreased and associated with depressive episodes and lipid peroxidation in bipolar II disorder: Longitudinal and cross-sectional analyses. Bipolar Disord. 18, 657–668. 10.1111/bdi.12457
Enache D., Winblad B., Aarsland D., (2011). Depression in dementia: epidemiology, mechanisms, and treatmen. Curr. Opin. Psychiatry 24, 461–472. 10.1097/YCO.0b013e32834bb9d421926624
Filho G. B., de Souza Duran F. L., Squarzoni P., Coutinho N. A. M., Rosa P. G. P., Torralbo L., et al. (2021). Hippocampal subregional volume changes in elders classified using positron emission tomography-based Alzheimer's biomarkers of β-amyloid deposition and neurodegeneration. J. Neurosci. Res. 99, 481–501. 10.1002/jnr.2473933073383
Fischl B., Sereno M. I., Dale A. M., (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207. 10.1006/nimg.1998.03969931269
Foo H., Thalamuthu A., Jiang J, Koch F, Mather K. A., Wen W., Sachdev P. S., (2020). Associations between Alzheimer's disease polygenic risk scores and hippocampal subfield volumes in 17,161 UK Biobank participants. Neurobiol. Aging 98, 108–115. 10.1016/j.neurobiolaging.2020.11.00233259984
Foster C. M., Kennedy K. M., Daugherty A. M., Rodrigue K. M., (2020). Contribution of iron and Abeta to age differences in entorhinal and hippocampal subfield volume. Neurology 95, e2586–e2594. 10.1212/WNL.000000000001086832938781
Garimella A., Rajguru S., Singla U. K., Alluri V., (2020). Marijuana and the hippocampus: a longitudinal study on the effects of marijuana on hippocampal subfields. Prog. Neuropsychopharmacol. Biol. Psychiatry 101:109897. 10.1016/j.pnpbp.2020.10989732119881
Genzel L., Dresler M., Cornu M., Jäger E., Konrad B., Adamczyk M., et al. (2015). Medial prefrontal-hippocampal connectivity and motor memory consolidation in depression and schizophrenia. Biol. Psychiatry 77, 177–186. 10.1016/j.biopsych.2014.06.00425037555
Han K. M., Kim A., Kang W., Kang Y., Kang J., Won E., et al. (2019). Hippocampal subfield volumes in major depressive disorder and bipolar disorder. Eur. Psychiatry 57, 70–77. 10.1016/j.eurpsy.2019.01.01630721801
Han K. M., Won E., Sim Y., Tae W. S., (2016). Hippocampal subfield analysis in medication-naïve female patients with major depressive disorder. J. Affect. Disord. 194, 21–29. 10.1016/j.jad.2016.01.01926802503
Hanseeuw B. J., Van Leemput K., Kavec M., Grandin C., Seron X., Ivanoiu A., (2011). Mild cognitive impairment: differential atrophy in the hippocampal subfields. AJNR Am. J. Neuroradiol. 32, 1658–1661. 10.3174/ajnr.A258921835940
Haukvik U. K., Gurholt T. P., Nerland S., Elvsåshagen T., Akudjedu T. N., Alda M., et al. (2020). In vivo hippocampal subfield volumes in bipolar disorder-A mega-analysis from the enhancing neuro imaging genetics through meta-analysis Bipolar Disorder Working Group. Hum Brain Mapp. (2020). 10.1002/hbm.25249. [Epub ahead of print].33073925
Heser K., Tebarth F., Wiese B., Eisele M., Bickel H., Köhler M., et al. (2013). Age of major depression onset, depressive symptoms, and risk for subsequent dementia: results of the German study on Ageing, Cognition, and Dementia in Primary Care Patients (AgeCoDe). Psychol. Med. 43, 1597–1610. 10.1017/S003329171200244923137390
Hibar D. P., Adams H. H. H., Jahanshad N., Chauhan G., Stein J. L., Hofer E., et al. (2017). Novel genetic loci associated with hippocampal volume. Nat. Commun. 8:13624. 10.1038/ncomms1362428098162
Iglesias J. E., Augustinack J. C., Nguyen K., Player C. M., Player A., Wright M., et al. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage 115, 117–137. 10.1016/j.neuroimage.2015.04.04225936807
Jack C. R., Jr. Bennett D. A., Blennow K., Carrillo M. C., Dunn B., Haeberlein S. B., et al. (2018). NIA-AA Research Framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement. 14, 535–562. 10.1016/j.jalz.2018.02.01829653606
Jacobs H. I. L., Augustinack J. C., Schultz A. P., Hanseeuw B. J., Locascio J., Amariglio R. E., et al. (2020). The presubiculum links incipient amyloid and tau pathology to memory function in older persons. Neurology 94, e1916–e1928. 10.1212/WNL.000000000000936232273431
Jamieson A., Goodwill A. M., Termine M., Campbell S., Szoeke C., (2019). Depression related cerebral pathology and its relationship with cognitive functioning: a systematic review. J. Affect. Disord. 250, 410–418. 10.1016/j.jad.2019.03.04230878653
Janiri D., Sani G., De Rossi P., Piras F., Banaj N., Ciullo V., et al. (2019). Hippocampal subfield volumes and childhood trauma in bipolar disorders. J. Affect. Disord. 253, 35–43. 10.1016/j.jad.2019.04.07131022627
Jessen F., Amariglio R. E., Buckley R. F., van der Flier W. M., Han Y., Molinuevo J. L., et al. (2020). The characterisation of subjective cognitive decline. Lancet Neurol. 19, 271–278. 10.1016/S1474-4422(19)30368-0
Jessen F., Amariglio R. E., van Boxtel M., Breteler M., Ceccaldi M., Chételat G., et al. (2014). Subjective Cognitive Decline Initiative (SCD-I) Working Group: a conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers Dement. 10, 844–852. 10.1016/j.jalz.2014.01.001
Jessen F., Spottke A., Boecker H., Brosseron F., Buerger K., Catak C., et al. (2018). Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer's disease (DELCODE). Alzheimers Res. Ther. 10:15. 10.1186/s13195-017-0314-229415768
La Joie R., Perrotin A., de La Sayette V., Egret S., Doeuvre L., Belliard S., et al. (2013). Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia. Neuroimage Clin. 14, 155–162. 10.1016/j.nicl.2013.08.00724179859
MacQueen G., Frodl T., (2011). The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol. Psychiatry (2011) 16, 252–264. 10.1038/mp.2010.8020661246
McKhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack C. R., Jr Kawas C. H., et al. (2011). The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 263–269. 10.1016/j.jalz.2011.03.00521514250
Mikolas P., Tozzi L., Doolin K., Farrell C., O'Keane V., Frodl T., (2019). Effects of early life adversity and FKBP5 genotype on hippocampal subfields volume in major depression. J. Affect. Disord. 252, 152–159. 10.1016/j.jad.2019.04.05430986730
Rizzolo L., Narbutas J., Van Egroo M., Chylinski D., Besson G., Baillet M., (2021). Relationship between brain AD biomarkers and episodic memory performance in healthy aging. Brain Cogn. 148:105680. 10.1016/j.bandc.2020.10568033418512
Schmaal L., Pozzi E., Ho T. C., van Velzen L. S., Veer I. M., Opel N., et al. (2020). ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing. Transl. Psych. 10:172. 10.1038/s41398-020-0842-632472038
Schmaal L., Veltman D. J., van Erp T. G., Sämann P. G., Frodl T., Jahanshad N., et al. (2016). Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 21, 806–812. 10.1038/mp.2015.6926122586
Singh-Manoux A., Dugravot A., Fournier A., Abell J., Ebmeier K., Kivimäki M., et al. (2017). Trajectories of depressive symptoms before diagnosis of dementia: a 28-year follow-up study. JAMA Psychiatry 74, 712–718. 10.1001/jamapsychiatry.2017.066028514478
Szymkowicz S. M., McLaren M. E., O'Shea A., Woods A. J., Anton S. D., Dotson V. M., (2017). Depressive symptoms modify age effects on hippocampal subfields in older adults. Geriatr. Gerontol. Int. 17, 1494–1500. 10.1111/ggi.1290127696657
Tannous J., Godlewska B. R., Tirumalaraju V., Soares J. C., Cowen P. J., Selvaraj S., (2020). Stress, inflammation and hippocampal subfields in depression: a 7 Tesla MRI Study. Transl. Psychiatry 10:78. 10.1038/s41398-020-0759-032098947
Tardif C. L., Devenyi G. A., Amaral R. S. C., Pelleieux S., Poirier J., Rosa-Neto P., et al. (2018). Regionally specific changes in hippocampal circuity accompany progression of cerebrospinal fluid biomarkers in preclinical Alzheimer's disease. Hum. Brain Mapp. 39, 971–984. 10.1002/hbm.23897
Treadway M. T., Waskom M. L., Dillon D. G., Holmes A. J., Park M. T. M., Chakravarty M. M., et al. (2015). Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol. Psychiatry 77, 285–294. 10.1016/j.biopsych.2014.06.01825109665
Videbech P., Ravnkilde B., (2004). Hippocampal volume and depression: a meta-analysis of MRI studies. Am. J. Psychiatry 161, 1957–1966. 10.1176/appi.ajp.161.11.195715514393
Wang S. Y., Xue X., Duan R., Gong P. Y., Jiang T., Zhang Y. D., et al. (2020). A TREML2 missense variant influences specific hippocampal subfield volumes in cognitively normal elderly subjects. Brain Behav. 10:e01573. 10.1002/brb3.157332073739
Weissman D. G., Lambert H. K., Rodman A. M., Peverill M., Sheridan M. A., McLaughlin K. A., (2020). Reduced hippocampal and amygdala volume as a mechanism underlying stress sensitization to depression following childhood trauma. Depress Anxiety. 37, 916–925. 10.1002/da.2306232579793
Whelan C. D., Hibar D. P., van Velzen L. S., Zannas A. S., Carrillo-Roa T., McMahon K., et al. (2016). Heritability and reliability of automatically segmented human hippocampal formation subregions. Neuroimage 128, 125–137. 10.1016/j.neuroimage.2015.12.03926747746
Xu J., Tang Y., Baro C. C., Zhang X., Meng Z., Li Y., (2018). Left fimbria atrophy is associated with hippocampal metabolism in female major depressive disorder patients. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 1136–1139. 10.1109/EMBC.2018.851247230440590
Xu R., Hu X., Jiang X., Zhang Y., Wang J., Zeng X., (2020). Longitudinal volume changes of hippocampal subfields and cognitive decline in Parkinson's disease. Quant. Imaging Med. Surg. 10, 220–232. 10.21037/qims.2019.10.1731956544
Yuan M., Rubin-Falcone H., Lin X., Rizk M. M., Miller J. M., Sublette M. E., et al. (2020). Smaller left hippocampal subfield CA1 volume is associated with reported childhood physical and/or sexual abuse in major depression: a pilot study. J. Affect. Disord. 272, 348–354. 10.1016/j.jad.2020.03.16932553377
Zhao W., Wang X., Yin C., He M., Li S., Han Y., (2019). Trajectories of the hippocampal subfields atrophy in the Alzheimer's disease: a structural imaging study. Front. Neuroinform. 13:1. 10.3389/fninf.2019.0001330983985