CB1 cannabinoid receptor; GABAergic neurons; LPS stimulation; cytokine expression; microglia activity; morphology and size; Molecular Biology; Cellular and Molecular Neuroscience
Abstract :
[en] Microglia, the resident immune cells of the brain, play important roles in defending the brain against pathogens and supporting neuronal circuit plasticity. Chronic or excessive pro-inflammatory responses of microglia damage neurons, therefore their activity is tightly regulated. Pharmacological and genetic studies revealed that cannabinoid type 1 (CB1) receptor activity influences microglial activity, although microglial CB1 receptor expression is very low and activity-dependent. The CB1 receptor is mainly expressed on neurons in the central nervous system (CNS)-with an especially high level on GABAergic interneurons. Here, we determined whether CB1 signaling on this neuronal cell type plays a role in regulating microglial activity. We compared microglia density, morphology and cytokine expression in wild-type (WT) and GABAergic neuron-specific CB1 knockout mice (GABA/CB1-/-) under control conditions (saline-treatment) and after 3 h, 24 h or repeated lipopolysaccharide (LPS)-treatment. Our results revealed that hippocampal microglia from saline-treated GABA/CB1-/- mice resembled those of LPS-treated WT mice: enhanced density and larger cell bodies, while the size and complexity of their processes was reduced. No further reduction in the size or complexity of microglia branching was detected after LPS-treatment in GABA/CB1-/- mice, suggesting that microglia in naïve GABA/CB1-/- mice were already in an activated state. This result was further supported by correlating the level of microglial tumor necrosis factor α (TNFα) with their size. Acute LPS-treatment elicited in both genotypes similar changes in the expression of pro-inflammatory cytokines (TNFα, interleukin-6 (IL-6) and interleukin 1β (IL-1β)). However, TNFα expression was still significantly elevated after repeated LPS-treatment in WT, but not in GABA/CB1-/- mice, indicating a faster development of tolerance to LPS. We also tested the possibility that the altered microglia activity in GABA/CB1-/- mice was due to an altered expression of neuron-glia interaction proteins. Indeed, the level of fractalkine (CX3CL1), a neuronal protein involved in the regulation of microglia, was reduced in hippocampal GABAergic neurons in GABA/CB1-/- mice, suggesting a disturbed neuronal control of microglial activity. Our result suggests that CB1 receptor agonists can modulate microglial activity indirectly, through CB1 receptors on GABAergic neurons. Altogether, we demonstrated that GABAergic neurons, despite their relatively low density in the hippocampus, have a specific role in the regulation of microglial activity and cannabinoid signaling plays an important role in this arrangement.
Disciplines :
Neurology
Author, co-author :
Ativie, Frank ✱; Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
Komorowska, Joanna A ✱; Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
Beins, Eva; Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
Albayram, Önder; Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
Zimmer, Till; Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
Zimmer, Andreas; Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
Tejera, Dario; Department of Neurodegenerative Diseases & Gerontopsychiatry, Medical Faculty, University of Bonn, Bonn, Germany
HENEKA, Michael ; Department of Neurodegenerative Diseases & Gerontopsychiatry, Medical Faculty, University of Bonn, Bonn, Germany
Bilkei-Gorzo, Andras; Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
✱ These authors have contributed equally to this work.
This work was financed by grants from the German Research Council (FOR926 CP1 to AZ, SFB1089 to MH, FOR926 SP2 and BI-1227/5-1 to AB-G) and from the BONFOR program of the University of Bonn Medical Center (to ÖA). AZ and MH are members of the DFG-funded Excellence-Cluster ImmunoSensation.
Albayram O., Alferink J., Pitsch J., Piyanova A., Neitzert K., Poppensieker K.. (2011). Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging. Proc. Natl. Acad. Sci. U S A 108, 11256–11261. 10.1073/pnas.101644210821690345.
Albayram O., Passlick S., Bilkei-Gorzo A., Zimmer A., Steinhauser C., (2016). Physiological impact of CB1 receptor expression by hippocampal GABAergic interneurons. Pflugers Arch. 468, 727–737. 10.1007/s00424-015-1782-526739712.
Arisi G. M., (2014). Nervous and immune systems signals and connections: cytokines in hippocampus physiology and pathology. Epilepsy Behav. 38, 43–47. 10.1016/j.yebeh.2014.01.01724534466.
Bellocchio L., Lafenêtre P., Cannich A., Cota D., Puente N., Grandes P.. (2010). Bimodal control of stimulated food intake by the endocannabinoid system. Nat. Neurosci. 13, 281–283. 10.1038/nn.249420139974.
Bessis A., Béchade C., Bernard D., Roumier A., (2007). Microglial control of neuronal death and synaptic properties. Glia 55, 233–238. 10.1002/glia.2045917106878.
Bilkei-Gorzo A., Drews E., Albayram O., Piyanova A., Gaffal E., Tueting T.. (2012). Early onset of aging-like changes is restricted to cognitive abilities and skin structure in Cnr1−/− mice. Neurobiol. Aging 33, e11–e22. 10.1016/j.neurobiolaging.2010.07.00920724033.
Bilkei-Gorzo A., Racz I., Valverde O., Otto M., Michel K., Sastre M.. (2005). Early age-related cognitive impairment in mice lacking cannabinoid CB1 receptors. Proc. Natl. Acad. Sci. U S A 102, 15670–15675. 10.1073/pnas.050464010216221768.
Burgos E., Gömez-Nicola D., Pascual D., Martin M. I., Nieto-Sampedro M., Goicoechea C., (2012). Cannabinoid agonist WIN 55,212–2 prevents the development of paclitaxel-induced peripheral neuropathy in rats. Possible involvement of spinal glial cells. Eur. J. Pharmacol. 682, 62–72. 10.1016/j.ejphar.2012.02.00822374260.
Cardona A. E., Pioro E. P., Sasse M. E., Kostenko V., Cardona S. M., Dijkstra I. M.. (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924. 10.1038/nn171516732273.
Carrier E. J., Kearn C. S., Barkmeier A. J., Breese N. M., Yang W., Nithipatikom K.. (2004). Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol. Pharmacol. 65, 999–1007. 10.1124/mol.65.4.99915044630.
Chavarría A., Cárdenas G., (2013). Neuronal influence behind the central nervous system regulation of the immune cells. Front. Integr. Neurosci. 7:64. 10.3389/fnint.2013.0006424032006.
Chiarlone A., Bellocchio L., Blázquez C., Resel E., Soria-Gómez E., Cannich A.. (2014). A restricted population of CB1 cannabinoid receptors with neuroprotective activity. Proc. Natl. Acad. Sci. U S A 111, 8257–8262. 10.1073/pnas.140098811124843137.
Crews F. T., Vetreno R. P., (2016). Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology 233, 1543–1557. 10.1007/s00213-015-3906-125787746.
Cunningham C., Wilcockson D. C., Campion S., Lunnon K., Perry V. H., (2005). Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 25, 9275–9284. 10.1523/JNEUROSCI.2614-05.200516207887.
Finch C. E., (2010). Evolution in health and medicine Sackler colloquium: evolution of the human lifespan and diseases of aging: roles of infection, inflammation and nutrition. Proc. Natl. Acad. Sci. U S A 107, 1718–1724. 10.1073/pnas.090960610619966301.
Hanisch U. K., Kettenmann H., (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394. 10.1038/nn199717965659.
Hoek R. M., Ruuls S. R., Murphy C. A., Wright G. J., Goddard R., Zurawski S. M.. (2000). Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771. 10.1126/science.290.5497.176811099416.
Ito D., Imai Y., Ohsawa K., Nakajima K., Fukuuchi Y., Kohsaka S., (1998). Microglia-specific localisation of a novel calcium binding protein, Iba1. Mol. Brain Res. 57, 1–9. 10.1016/s0169-328x(98)00040-09630473.
Katona I., Sperlágh B., Sik A., Käfalvi A., Vizi E. S., Mackie K.. (1999). Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 19, 4544–4558. 10.1523/jneurosci.19-11-04544.199910341254.
Kaunzner U. W., Miller M. M., Gottfried-Blackmore A., Gal-Toth J., Felger J. C., McEwen B. S.. (2012). Accumulation of resident and peripheral dendritic cells in the aging CNS. Neurobiol. Aging 33, 681–693.e1. 10.1016/j.neurobiolaging.2010.06.00720692074.
Lafenêtre P., Chaouloff F., Marsicano G., (2009). Bidirectional regulation of novelty-induced behavioral inhibition by the endocannabinoid system. Neuropharmacology 57, 715–721. 10.1016/j.neuropharm.2009.07.01419607846.
Ledent C., Valverde O., Cossu G., Petitet F., Aubert J. F., Beslot F.. (1999). Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283, 401–404. 10.1126/science.283.5400.4019888857.
Liu H., Leak R. K., Hu X., (2016). Neurotransmitter receptors on microglia. Stroke Vasc. Neurol. 1, 52–58. 10.1136/svn-2016-00001228959464.
Lou Z. Y., Cheng J., Wang X. R., Zhao Y. F., Gan J., Zhou G. Y.. (2018). The inhibition of CB1 receptor accelerates the onset and development of EAE possibly by regulating microglia/macrophages polarization. J. Neuroimmunol. 317, 37–44. 10.1016/j.jneuroim.2018.02.00129501084.
Lucin K. M., Wyss-Coray T., (2009). Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64, 110–122. 10.1016/j.neuron.2009.08.03919840553.
Luongo L., Palazzo E., De Novelis V., Maione S., (2010). Role of endocannabinoids in neuron-glial crosstalk. Open Pain J. 3, 29–36. 10.2174/1876386301003010029.
Lynch M. A., (2009). The multifaceted profile of activated microglia. Mol. Neurobiol. 40, 139–156. 10.1007/s12035-009-8077-919629762.
Lynch M. A., (2010). Age-related neuroinflammatory changes negatively impact on neuronal function. Front. Aging Neurosci. 1:6. 10.3389/neuro.24.006.200920552057.
Marchalant Y., Rosi S., Wenk G. L., (2007). Anti-inflammatory property of the cannabinoid agonist WIN-55212–2 in a rodent model of chronic brain inflammation. Neuroscience 144, 1516–1522. 10.1016/j.neuroscience.2006.11.01617178196.
Marsicano G., Lutz B., (1999). Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 11, 4213–4225. 10.1046/j.1460-9568.1999.00847.x10594647.
Metna-Laurent M., Soria-Gómez E., Verrier D., Conforzi M., Jégo P., Lafenêtre P.. (2012). Bimodal control of fear-coping strategies by CB1 cannabinoid receptors. J. Neurosci. 32, 7109–7118. 10.1523/JNEUROSCI.1054-12.201222623656.
Monory K., Blaudzun H., Massa F., Kaiser N., Lemberger T., Schutz G.. (2007). Genetic dissection of behavioural and autonomic effects of Δ9-tetrahydrocannabinol in mice. PLoS Biol. 5:e269. 10.1371/journal.pbio.005026917927447.
Monory K., Massa F., Egertova M., Eder M., Blaudzun H., Westenbroek R.. (2006). The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51, 455–466. 10.1016/j.neuron.2006.07.00616908411.
Monory K., Polack M., Remus A., Lutz B., Korte M., (2015). Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus. J. Neurosci. 35, 3842–3850. 10.1523/JNEUROSCI.3167-14.201525740514.
Muccioli G. G., Stella N., (2008). Microglia produce and hydrolyze palmitoylethanolamide. Neuropharmacology 54, 16–22. 10.1016/j.neuropharm.2007.05.01517631917.
Muccioli G. G., Xu C., Odah E., Cudaback E., Cisneros J. A., Lambert D. M.. (2007). Identification of a novel endocannabinoid-hydrolyzing enzyme expressed by microglial cells. J. Neurosci. 27, 2883–2889. 10.1523/JNEUROSCI.4830-06.200717360910.
Neumann H., Kotter M. R., Franklin R. J., (2009). Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132, 288–295. 10.1093/brain/awn10918567623.
Nimmerjahn A., Kirchhoff F., Helmchen F., (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318. 10.1126/science.111064715831717.
Norden D. M., Trojanowski P. J., Villanueva E., Navarro E., Godbout J. P., (2016). Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64, 300–316. 10.1002/glia.2293026470014.
Notter T., Panzanelli P., Pfister S., Mircsof D., Fritschy J. M., (2014). A protocol for concurrent high-quality immunohistochemical and biochemical analyses in adult mouse central nervous system. Eur. J. Neurosci. 39, 165–175. 10.1111/ejn.1244724325300.
Palazuelos J., Aguado T., Pazos M. R., Julien B., Carrasco C., Resel E.. (2009). Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain 132, 3152–3164. 10.1093/brain/awp23919805493.
Perry V. H., Nicoll J. A., Holmes C., (2010). Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6, 193–201. 10.1038/nrneurol.2010.1720234358.
Pintado C., Revilla E., Vizuete M. L., Jiménez S., Garcia-Cuervo L., Vitorica J.. (2011). Regional difference in inflammatory response to LPS-injection in the brain: role of microglia cell density. J. Neuroimmunol. 238, 44–51. 10.1016/j.jneuroim.2011.06.01721803430.
Pocock J. M., Kettenmann H., (2007). Neurotransmitter receptors on microglia. Trends Neurosci. 30, 527–535. 10.1016/j.tins.2007.07.00717904651.
Racz I., Nadal X., Alferink J., Baños J. E., Rehnelt J., Martin M.. (2008). Crucial role of CB2 cannabinoid receptor in the regulation of central immune responses during neuropathic pain. J. Neurosci. 28, 12125–12135. 10.1523/JNEUROSCI.3400-08.200819005077.
Ribeiro R., Yu F., Wen J., Vana A., Zhang Y., (2013). Therapeutic potential of a novel cannabinoid agent CB52 in the mouse model of experimental autoimmune encephalomyelitis. Neuroscience 254, 427–442. 10.1016/j.neuroscience.2013.09.00524036373.
Romero-Sandoval E. A., Horvath R., Landry R. P., DeLeo J. A., (2009). Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation. Mol. Pain 5:25. 10.1186/1744-8069-5-2519476641.
Ron-Harel N., Schwartz M., (2009). Immune senescence and brain aging: can rejuvenation of immunity reverse memory loss? Trends Neurosci. 32, 367–375. 10.1016/j.tins.2009.03.00319520437.
Schmidt W., Schäfer F., Striggow V., Frohlich K., Striggow F., (2012). Cannabinoid receptor subtypes 1 and 2 mediate long-lasting neuroprotection and improve motor behavior deficits after transient focal cerebral ischemia. Neuroscience 227, 313–326. 10.1016/j.neuroscience.2012.09.08023069763.
Schuitemaker A., van der Doef T. F., Boellaard R., van der Flier W. M., Yaqub M., Windhorst A. D.. (2012). Microglial activation in healthy aging. Neurobiol. Aging 33, 1067–1072. 10.1016/j.neurobiolaging.2010.09.01621051106.
Scorcioni R., Polavaram S., Ascoli G. A., (2008). L-measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat. Protoc. 3, 866–876. 10.1038/nprot.2008.5118451794.
Steindel F., Lerner R., Häring M., Ruehle S., Marsicano G., Lutz B.. (2013). Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus. J. Neurochem. 124, 795–807. 10.1111/jnc.1213723289830.
Steiner M. A., Marsicano G., Wotjak C. T., Lutz B., (2008). Conditional cannabinoid receptor type 1 mutants reveal neuron subpopulation-specific effects on behavioral and neuroendocrine stress responses. Psychoneuroendocrinology 33, 1165–1170. 10.1016/j.psyneuen.2008.06.00418653287.
Stella N., (2010). Cannabinoid and cannabinoid-like receptors in microglia, astrocytes and astrocytomas. Glia 58, 1017–1030. 10.1002/glia.2098320468046.
Tha K. K., Okuma Y., Miyazaki H., Murayama T., Uehara T., Hatakeyama R.. (2000). Changes in expressions of proinflammatory cytokines IL-1β, TNF-α and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 885, 25–31. 10.1016/s0006-8993(00)02883-311121526.
Tham C. S., Whitaker J., Luo L., Webb M., (2007). Inhibition of microglial fatty acid amide hydrolase modulates LPS stimulated release of inflammatory mediators. FEBS Lett. 581, 2899–2904. 10.1016/j.febslet.2007.05.03717543306.
Touriño C., Zimmer A., Valverde O., (2010). THC prevents MDMA neurotoxicity in mice. PLoS One 5:e9143. 10.1371/journal.pone.000914320174577.
Ullrich O., Merker K., Timm J., Tauber S., (2007). Immune control by endocannabinoids - new mechanisms of neuroprotection? J. Neuroimmunol. 184, 127–135. 10.1016/j.jneuroim.2006.11.01817196262.
Verdonk F., Roux P., Flamant P., Fiette L., Bozza F. A., Simard S.. (2016). Phenotypic clustering: a novel method for microglial morphology analysis. J. Neuroinflammation 13:153. 10.1186/s12974-016-0614-727317566.
Villeda S. A., Luo J., Mosher K. I., Zou B., Britschgi M., Bieri G.. (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94. 10.1038/nature1035721886162.
Von Bernhardi R., Tichauer J. E., Eugenin J., (2010). Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J. Neurochem. 112, 1099–1114. 10.1111/j.1471-4159.2009.06537.x20002526.
Wake H., Moorhouse A. J., Jinno S., Kohsaka S., Nabekura J., (2009). Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980. 10.1523/jneurosci.4363-08.200919339593.
Walter L., Franklin A., Witting A., Wade C., Xie Y., Kunos G.. (2003). Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci. 23, 1398–1405. 10.1523/jneurosci.23-04-01398.200312598628.
Walter L., Dinh T., Stella N., (2004). ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J. Neurosci. 24, 8068–8074. 10.1523/jneurosci.2419-04.200415371507.
Witting A., Walter L., Wacker J., Moller T., Stella N., (2004). P2X7 receptors control 2-arachidonoylglycerol production by microglial cells. Proc. Natl. Acad. Sci. U S A 101, 3214–3219. 10.1073/pnas.030670710114976257.
Wolf S. A., Tauber S., Ullrich O., (2008). CNS immune surveillance and neuroinflammation: endocannabinoids keep control. Curr. Pharm. Des. 14, 2266–2278. 10.2174/13816120878574009018781977.
Zimmer A., Zimmer A. M., Hohmann A. G., Herkenham M., Bonner T. I., (1999). Increased mortality, hypoactivity and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. Natl. Acad. Sci. U S A 96, 5780–5785. 10.1073/pnas.96.10.578010318961.