[en] Peripheral inflammation is known to impact brain function, resulting in lethargy, loss of appetite and impaired cognitive abilities. However, the channels for information transfer from the periphery to the brain, the corresponding signaling molecules and the inflammation-induced interaction between microglia and neurons remain obscure. Here, we used longitudinal in vivo two-photon Ca2+ imaging to monitor neuronal activity in the mouse cortex throughout the early (initiation) and late (resolution) phases of peripheral inflammation. Single peripheral lipopolysaccharide injection induced a substantial but transient increase in ongoing neuronal activity, restricted to the initiation phase, whereas the impairment of visual processing was selectively observed during the resolution phase of systemic inflammation. In the frontal/motor cortex, the initiation phase-specific cortical hyperactivity was seen in the deep (layer 5) and superficial (layer 2/3) pyramidal neurons but not in the axons coming from the somatosensory cortex, and was accompanied by reduced activity of layer 2/3 cortical interneurons. Moreover, the hyperactivity was preserved after depletion of microglia and in NLRP3-/- mice but absent in TNF-α-/- mice. Together, these data identify microglia-independent and TNF-α-mediated reduction of cortical inhibition as a likely cause of the initiation phase-specific cortical hyperactivity and reveal the resolution phase-specific impairment of sensory processing, presumably caused by activated microglia.
Disciplines :
Neurology
Author, co-author :
Odoj, Karin; Institute of Physiology, Department of Neurophysiology, Eberhard Karls University Tübingen, Tübingen, Germany
Brawek, Bianca; Institute of Physiology, Department of Neurophysiology, Eberhard Karls University Tübingen, Tübingen, Germany
Asavapanumas, Nithi; Institute of Physiology, Department of Neurophysiology, Eberhard Karls University Tübingen, Tübingen, Germany
Mojtahedi, Nima; Institute of Physiology, Department of Neurophysiology, Eberhard Karls University Tübingen, Tübingen, Germany
HENEKA, Michael ; Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn, Bonn, Germany, German Center for Neurodegenerative Diseases, Bonn, Germany
Garaschuk, Olga; Institute of Physiology, Department of Neurophysiology, Eberhard Karls University Tübingen, Tübingen, Germany. Electronic address: olga.garaschuk@uni-tuebingen.de
External co-authors :
yes
Language :
English
Title :
In vivo mechanisms of cortical network dysfunction induced by systemic inflammation.
We thank E. Zirdum, A. Weible, and K. Schöntag for technical assistance and Y. Kovalchuk for experimental help during the revision of this study. This work was partially supported by the DFG grant GA 654/13-1 to O.G. PLX 5622 drug was provided by Plexxikon Inc. under Material Transfer Agreement.
Akiyoshi, R., Wake, H., Kato, D., Horiuchi, H., Ono, R., Ikegami, A., Haruwaka, K., Omori, T., Tachibana, Y., Moorhouse, A.J., Nabekura, J., Microglia Enhance Synapse Activity to Promote Local Network Synchronization. eNeuro, 5, 2018.
Asavapanumas, N., Brawek, B., Martus, P., Garaschuk, O., Role of intracellular Ca2+ stores for an impairment of visual processing in a mouse model of Alzheimer's disease. Neurobiol. Dis. 121 (2019), 315–326.
Atallah, B.V., Bruns, W., Carandini, M., Scanziani, M., Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73 (2012), 159–170.
Badimon, A., Strasburger, H.J., Ayata, P., Chen, X., Nair, A., Ikegami, A., Hwang, P., Chan, A.T., Graves, S.M., Uweru, J.O., Ledderose, C., Kutlu, M.G., Wheeler, M.A., Kahan, A., Ishikawa, M., Wang, Y.C., Loh, Y.E., Jiang, J.X., Surmeier, D.J., Robson, S.C., Junger, W.G., Sebra, R., Calipari, E.S., Kenny, P.J., Eyo, U.B., Colonna, M., Quintana, F.J., Wake, H., Gradinaru, V., Schaefer, A., Negative feedback control of neuronal activity by microglia. Nature 586 (2020), 417–423.
Bates, D., Machler, M., Bolker, B.M., Walker, S.C., Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 (2015), 1–48.
Bechade, C., Cantaut-Belarif, Y., Bessis, A., Microglial control of neuronal activity. Front. Cell. Neurosci., 7, 2013, 32.
Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., Volterra, A., CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4 (2001), 702–710.
Brawek, B., Liang, Y., Savitska, D., Li, K., Fomin-Thunemann, N., Kovalchuk, Y., Zirdum, E., Jakobsson, J., Garaschuk, O., A new approach for ratiometric in vivo calcium imaging of microglia. Sci. Rep., 7, 2017, 6030.
Capuron, L., Miller, A.H., Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol. Ther. 130 (2011), 226–238.
Cerri, C., Genovesi, S., Allegra, M., Pistillo, F., Puntener, U., Guglielmotti, A., Perry, V.H., Bozzi, Y., Caleo, M., The chemokine CCL2 mediates the seizure-enhancing effects of systemic inflammation. J. Neurosci. 36 (2016), 3777–3788.
Chao, H.T., Chen, H., Samaco, R.C., Xue, M., Chahrour, M., Yoo, J., Neul, J.L., Gong, S., Lu, H.C., Heintz, N., Ekker, M., Rubenstein, J.L., Noebels, J.L., Rosenmund, C., Zoghbi, H.Y., Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468 (2010), 263–269.
Chen, Z., Jalabi, W., Hu, W., Park, H.J., Gale, J.T., Kidd, G.J., Bernatowicz, R., Gossman, Z.C., Chen, J.T., Dutta, R., Trapp, B.D., Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat. Commun., 5, 2014, 4486.
Cserep, C., Posfai, B., Lenart, N., Fekete, R., Laszlo, Z.I., Lele, Z., Orsolits, B., Molnar, G., Heindl, S., Schwarcz, A.D., Ujvari, K., Kornyei, Z., Toth, K., Szabadits, E., Sperlagh, B., Baranyi, M., Csiba, L., Hortobagyi, T., Magloczky, Z., Martinecz, B., Szabo, G., Erdelyi, F., Szipocs, R., Tamkun, M.M., Gesierich, B., Duering, M., Katona, I., Liesz, A., Tamas, G., Denes, A., Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367 (2020), 528–537.
Dantzer, R., O'Connor, J.C., Freund, G.G., Johnson, R.W., Kelley, K.W., From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9 (2008), 46–56.
Doenlen, R., Krugel, U., Wirth, T., Riether, C., Engler, A., Prager, G., Engler, H., Schedlowski, M., Pacheco-Lopez, G., Electrical activity in rat cortico-limbic structures after single or repeated administration of lipopolysaccharide or staphylococcal enterotoxin B. Proc. Biol. Sci. 278 (2011), 1864–1872.
Eichhoff, G., Brawek, B., Garaschuk, O., Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. BBA 1813 (2011), 1014–1024.
Elmore, M.R., Najafi, A.R., Koike, M.A., Dagher, N.N., Spangenberg, E.E., Rice, R.A., Kitazawa, M., Matusow, B., Nguyen, H., West, B.L., Green, K.N., Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82 (2014), 380–397.
Erickson, M.A., Banks, W.A., Neuroimmune axes of the blood-brain barriers and blood-brain interfaces: bases for physiological regulation, disease states, and pharmacological interventions. Pharmacol. Rev. 70 (2018), 278–314.
Galic, M.A., Riazi, K., Pittman, Q.J., Cytokines and brain excitability. Front. Neuroendocrinol. 33 (2012), 116–125.
Garaschuk, O., The role of NLRP3 inflammasome for microglial response to peripheral inflammation. Neural Regen. Res. 16 (2021), 294–295.
Gosselin, D., Rivest, S., Role of IL-1 and TNF in the brain: twenty years of progress on a Dr. Jekyll/Mr. Hyde duality of the innate immune system. Brain Behav. Immun. 21 (2007), 281–289.
Griton, M., Konsman, J.P., Neural pathways involved in infection-induced inflammation: recent insights and clinical implications. Clin. Auton. Res. 28 (2018), 289–299.
Gutierrez, E.G., Banks, W.A., Kastin, A.J., Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J. Neuroimmunol. 47 (1993), 169–176.
Gyoneva, S., Davalos, D., Biswas, D., Swanger, S.A., Garnier-Amblard, E., Loth, F., Akassoglou, K., Traynelis, S.F., Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia 62 (2014), 1345–1360.
Hayashi, Y., Ishibashi, H., Hashimoto, K., Nakanishi, H., Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors. Glia 53 (2006), 660–668.
Hooks, B.M., Mao, T., Gutnisky, D.A., Yamawaki, N., Svoboda, K., Shepherd, G.M., Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J. Neurosci. 33 (2013), 748–760.
Hothorn, T., Bretz, F., Westfall, P., Simultaneous inference in general parametric models. Biom. J. 50 (2008), 346–363.
Hyvärinen, A., Juha, K., Erkki, O., Independent component analysis. Appl. Comput. Harmon. Anal. 21 (2001), 135–144.
Kanneganti, T.D., Ozoren, N., Body-Malapel, M., Amer, A., Park, J.H., Franchi, L., Whitfield, J., Barchet, W., Colonna, M., Vandenabeele, P., Bertin, J., Coyle, A., Grant, E.P., Akira, S., Nunez, G., Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440 (2006), 233–236.
Kovacs, Z., Dobolyi, A., Juhasz, G., Kekesi, K.A., Lipopolysaccharide induced increase in seizure activity in two animal models of absence epilepsy WAG/Rij and GAERS rats and Long Evans rats. Brain Res. Bull. 104 (2014), 7–18.
Kovalchuk, Y., Homma, R., Liang, Y., Maslyukov, A., Hermes, M., Thestrup, T., Griesbeck, O., Ninkovic, J., Cohen, L.B., Garaschuk, O., In vivo odourant response properties of migrating adult-born neurons in the mouse olfactory bulb. Nat. Commun., 6, 2015, 6349.
Kozlowski, C., Weimer, R.M., An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo. PLoS ONE, 7, 2012, e31814.
Lerdkrai, C., Asavapanumas, N., Brawek, B., Kovalchuk, Y., Mojtahedi, N., Olmedillas Del Moral, M., Garaschuk, O., Intracellular Ca2+ stores control in vivo neuronal hyperactivity in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA. 115 (2018), E1279–E1288.
Liu, Y.J., Spangenberg, E.E., Tang, B., Holmes, T.C., Green, K.N., Xu, X., Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex. J. Neurosci. 41 (2021), 1274–1287.
Mao, T., Kusefoglu, D., Hooks, B.M., Huber, D., Petreanu, L., Svoboda, K., Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72 (2011), 111–123.
McCusker, R.H., Kelley, K.W., Immune-neural connections: how the immune system's response to infectious agents influences behavior. J. Exp. Biol. 216 (2013), 84–98.
Medzhitov, R., Origin and physiological roles of inflammation. Nature 454 (2008), 428–435.
Moriguchi, S., Mizoguchi, Y., Tomimatsu, Y., Hayashi, Y., Kadowaki, T., Kagamiishi, Y., Katsube, N., Yamamoto, K., Inoue, K., Watanabe, S., Nabekura, J., Nakanishi, H., Potentiation of NMDA receptor-mediated synaptic responses by microglia. Brain Res. Mol. Brain Res. 119 (2003), 160–169.
Munshi, S., Rosenkranz, J.A., Effects of peripheral immune challenge on in vivo firing of basolateral amygdala neurons in adult male rats. Neuroscience 390 (2018), 174–186.
Nagayama, S., Zeng, S., Xiong, W., Fletcher, M.L., Masurkar, A.V., Davis, D.J., Pieribone, V.A., Chen, W.R., In vivo simultaneous tracing and Ca2+ imaging of local neuronal circuits. Neuron 53 (2007), 789–803.
Niell, C.M., Stryker, M.P., Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28 (2008), 7520–7536.
Norden, D.M., Trojanowski, P.J., Villanueva, E., Navarro, E., Godbout, J.P., Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64 (2016), 300–316.
Olmos, G., Llado, J., Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm., 2014, 2014, 861231.
Paolicelli, R.C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., Giustetto, M., Ferreira, T.A., Guiducci, E., Dumas, L., Ragozzino, D., Gross, C.T., Synaptic pruning by microglia is necessary for normal brain development. Science 333 (2011), 1456–1458.
Pascual, O., Ben Achour, S., Rostaing, P., Triller, A., Bessis, A., Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci. USA. 109 (2012), E197–205.
Pasparakis, M., Alexopoulou, L., Episkopou, V., Kollias, G., Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184 (1996), 1397–1411.
Pozner, A., Xu, B., Palumbos, S., Gee, J.M., Tvrdik, P., Capecchi, M.R., Intracellular calcium dynamics in cortical microglia responding to focal laser injury in the PC::G5-tdT reporter mouse. Front. Mol. Neurosci., 8, 2015, 12.
Riazi, K., Galic, M.A., Kentner, A.C., Reid, A.Y., Sharkey, K.A., Pittman, Q.J., Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J. Neurosci. 35 (2015), 4942–4952.
Riazi, K., Galic, M.A., Kuzmiski, J.B., Ho, W., Sharkey, K.A., Pittman, Q.J., Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc. Natl. Acad. Sci. USA. 105 (2008), 17151–17156.
Riester, K., Brawek, B., Savitska, D., Frohlich, N., Zirdum, E., Mojtahedi, N., Heneka, M.T., Garaschuk, O., In vivo characterization of functional states of cortical microglia during peripheral inflammation. Brain Behav. Immun. 87 (2020), 243–255.
Rodgers, K.M., Hutchinson, M.R., Northcutt, A., Maier, S.F., Watkins, L.R., Barth, D.S., The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 132 (2009), 2478–2486.
Santello, M., Volterra, A., TNFalpha in synaptic function: switching gears. Trends Neurosci. 35 (2012), 638–647.
Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R., Ransohoff, R.M., Greenberg, M.E., Barres, B.A., Stevens, B., Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74 (2012), 691–705.
Sousa, C., Golebiewska, A., Poovathingal, S.K., Kaoma, T., Pires-Afonso, Y., Martina, S., Coowar, D., Azuaje, F., Skupin, A., Balling, R., Biber, K., Niclou, S.P., Michelucci, A., Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep., 19, 2018.
Suter, B.A., Shepherd, G.M., Reciprocal interareal connections to corticospinal neurons in mouse M1 and S2. J. Neurosci. 35 (2015), 2959–2974.
Team, R.C., 2013. R: A language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria.
Tejera, D., Mercan, D., Sanchez-Caro, J.M., Hanan, M., Greenberg, D., Soreq, H., Latz, E., Golenbock, D., Heneka, M.T., Systemic inflammation impairs microglial Abeta clearance through NLRP3 inflammasome. EMBO J., 38, 2019, e101064.
Thestrup, T., Litzlbauer, J., Bartholomaus, I., Mues, M., Russo, L., Dana, H., Kovalchuk, Y., Liang, Y., Kalamakis, G., Laukat, Y., Becker, S., Witte, G., Geiger, A., Allen, T., Rome, L.C., Chen, T.W., Kim, D.S., Garaschuk, O., Griesinger, C., Griesbeck, O., Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11 (2014), 175–182.
Tremblay, M.E., Lowery, R.L., Majewska, A.K., Microglial interactions with synapses are modulated by visual experience. PLoS Biol., 8, 2010, e1000527.
Umpierre, A.D., Bystrom, L.L., Ying, Y., Liu, Y.U., Worrell, G., Wu, L.J., Microglial calcium signaling is attuned to neuronal activity in awake mice. Elife, 9, 2020.
Vichaya, E.G., Malik, S., Sominsky, L., Ford, B.G., Spencer, S.J., Dantzer, R., Microglia depletion fails to abrogate inflammation-induced sickness in mice and rats. J. Neuroinflamm., 17, 2020, 172.
Wake, H., Moorhouse, A.J., Jinno, S., Kohsaka, S., Nabekura, J., Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29 (2009), 3974–3980.
Xi, X., Toth, L.A., Lipopolysaccharide effects on neuronal activity in rat basal forebrain and hypothalamus during sleep and waking. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278 (2000), R620–627.
Zhang, H., Dougherty, P.M., Acute inhibition of signalling phenotype of spinal GABAergic neurons by tumour necrosis factor-alpha. J. Physiol. 589 (2011), 4511–4526.
Zhang, H., Nei, H., Dougherty, P.M., A p38 mitogen-activated protein kinase-dependent mechanism of disinhibition in spinal synaptic transmission induced by tumor necrosis factor-alpha. J. Neurosci. 30 (2010), 12844–12855.