[en] The Eph-ephrin system plays pivotal roles in cell adhesion and migration. The receptor-like functions of the ephrin ligands allow the regulation of intracellular processes via reverse signaling. γ-Secretase mediated processing of ephrin-B has previously been linked to activation of Src, a kinase crucial for focal adhesion and podosome phosphorylation. Here, we analyzed the role of γ-secretase in the stimulation of reverse ephrin-B2 signaling in the migration of mouse embryonic stem cell derived microglia. The proteolytic generation of the ephrin-B2 intracellular domain (ICD) by γ-secretase stimulates Src and focal adhesion kinase (FAK). Inhibition of γ-secretase decreased the phosphorylation of Src and FAK, and reduced cell motility. These effects were associated with enlargement of the podosomal surface. Interestingly, expression of ephrin-B2 ICD could rescue these effects, indicating that this proteolytic fragment mediates the activation of Src and FAK, and thereby regulates podosomal dynamics in microglial cells. Together, these results identify γ-secretase as well as ephrin-B2 as regulators of microglial migration.
Disciplines :
Neurology
Author, co-author :
Kemmerling, Nadja ; Department of Neurology, University of Bonn, Bonn, 53127, Germany
Wunderlich, Patrick; Department of Neurology, University of Bonn, Bonn, 53127, Germany
Theil, Sandra; Department of Neurology, University of Bonn, Bonn, 53127, Germany
Linnartz-Gerlach, Bettina; Institute of Reconstructive Neurobiology, University of Bonn, Bonn, 53127, Germany
Hersch, Nils; Institute of Complex Systems, ICS-7 Biomechanics, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
Hoffmann, Bernd; Institute of Complex Systems, ICS-7 Biomechanics, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
HENEKA, Michael ; Department of Neurology, University of Bonn, Bonn, 53127, Germany ; German Center for Neurodegenerative Diseases, Bonn, 53127, Germany
de Strooper, Bart; KULeuven Centre for Human Genetics, Leuven, 3000, Belgium ; Centre for Brain and Disease, VIB (Flanders Institute for Biotechnology), Leuven, 3000, Belgium
Neumann, Harald ; Institute of Reconstructive Neurobiology, University of Bonn, Bonn, 53127, Germany
Walter, Jochen ; Department of Neurology, University of Bonn, Bonn, 53127, Germany
External co-authors :
yes
Language :
English
Title :
Intramembranous processing by γ-secretase regulates reverse signaling of ephrin-B2 in migration of microglia.
We are grateful to Dr. C. Beutner for the generation of ESdM, Dr. D. Wachten for allowing us to work with the Nikon Eclipse Ti fluorescence microscope, H. Hamzeh for his great technical support regarding TIRF microscopy, Dr. C. Glebov for the technical support with live imaging, A. Viera-Saecker for providing primary microglia, A. -L. Scheithauer for her general support, and Dr. O. Brüstle for the lentiviral expression plasmid. This project was supported by the DFG (SFB645, KFO177, and SFB704). H. Neumann, B. Linnartz-Gerlach, and M. T. Heneka are members of the DFG-funded excellence cluster “ImmunoSensation” (EXC 1023).
Allen-Sharpley, M. R., & Cramer, K. S. (2012). Coordinated Eph-ephrin signaling guides migration and axon targeting in the avian auditory system. Neural Development, 7, 29.
Aslanidis, A., Karlstetter, M., Scholz, R., Fauser, S., Neumann, H., Fried, C., …, Langmann, T. (2015). Activated microglia/macrophage whey acidic protein (AMWAP) inhibits NFkappaB signaling and induces a neuroprotective phenotype in microglia. Journal of Neuroinflammation, 12, 77.
Atapattu, L., Lackmann, M., & Janes, P. W. (2014). The role of proteases in regulating Eph/ephrin signaling. Cell Adhesion & Migration, 8, 294–307.
Beins, E., Ulas, T., Ternes, S., Neumann, H., Schultze, J. L., & Zimmer, A. (2016). Characterization of inflammatory markers and transcriptome profiles of differentially activated embryonic stem cell-derived microglia. Glia, 64, 1007–1020.
Beutner, C., Linnartz-Gerlach, B., Schmidt, S. V., Beyer, M., Mallmann, M. R., Staratschek-Jox, A., …, Neumann, H. (2013). Unique transcriptome signature of mouse microglia. Glia, 61, 1429–1442.
Beutner, C., Roy, K., Linnartz, B., Napoli, I., & Neumann, H. (2010). Generation of microglial cells from mouse embryonic stem cells. Nature Protocols, 5, 1481–1494.
Cameron, B, & Landreth, G. E. (2010). Inflammation, microglia, and Alzheimer's disease. Neurobiology of Disease, 37, 503–509.
Cisse, M., Halabisky, B., Harris, J., Devidze, N., Dubal, D. B., Sun, B., …, Hamto, P. (2011). Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature, 469, 47–52.
Cowan, C. A., & Henkemeyer, M. (2001). The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature, 413, 174–179.
Cui, W., Ke, J. Z., Zhang, Q., Ke, H. Z., Chalouni, C., & Vignery, A. (2006). The intracellular domain of CD44 promotes the fusion of macrophages. Blood, 107, 796–805.
De Strooper, B., & Annaert, W. (2010). Novel research horizons for presenilins and gamma-secretases in cell biology and disease. Annual Review of Cell and Developmental Biology, 26, 235–260.
Fincham, V. J., Brunton, V. G., & Frame, M. C. (2000). The SH3 domain directs acto-myosin-dependent targeting of v-Src to focal adhesions via phosphatidylinositol 3-kinase. Molecular and Cellular Biology, 20, 6518–6536.
Foo, S. S., Turner, C. J., Adams, S., Compagni, A., Aubyn, D., Kogata, N., …, Adams, R. H. (2006). Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell, 124, 161–173.
Frame, M. C. (2004). Newest findings on the oldest oncogene; how activated src does it. Journal of Cell Science, 117, 989–998.
Fu, R., Shen, Q., Xu, P., Luo, J. J., & Tang, Y. (2014). Phagocytosis of microglia in the central nervous system diseases. Molecular Neurobiology, 49, 1422–1434.
Georgakopoulos, A., Litterst, C., Ghersi, E., Baki, L., Xu, C., Serban, G., & Robakis, N. K. (2006). Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO Journal, 25, 1242–1252.
Georgakopoulos, A., Xu, J., Xu, C., Mauger, G., Barthet, G., & Robakis, N. K. (2011). Presenilin1/gamma-secretase promotes the EphB2-induced phosphorylation of ephrinB2 by regulating phosphoprotein associated with glycosphingolipid-enriched microdomains/Csk binding protein. FASEB Journal, 25, 3594–3604.
Giulian, D., & Baker, T. J. (1986). Characterization of ameboid microglia isolated from developing mammalian brain. Journal of Neuroscience, 6, 2163–2178.
Hanks, S. K., Ryzhova, L., Shin, N. Y., & Brabek, J. (2003). Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Frontiers in Bioscience, 8, d982–d996.
Heneka, M. T., Golenbock, D. T., & Latz, E. (2015). Innate immunity in Alzheimer's disease. Nature Immunology, 16, 229–236.
Herreman, A., Hartmann, D., Annaert, W., Saftig, P., Craessaerts, K., Serneels, L., …, Vanderstichele, H. (1999). Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proceedings of the National Academy of Sciences of the United States of America, 96, 11872–11877.
Holland, S. J., Gale, N. W., Mbamalu, G., Yancopoulos, G. D., Henkemeyer, M., & Pawson, T. (1996). Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature, 383, 722–725.
Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J. C., Carrasquillo, M. M., …, Moskvina, V. (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 43, 429–435.
Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., …, Yamamoto, T. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377, 539–544.
Inoue, E., Deguchi-Tawarada, M., Togawa, A., Matsui, C., Arita, K., Katahira-Tayama, S., Sato, T., Yamauchi, E., Oda, Y., & Takai, Y. (2009). Synaptic activity prompts gamma-secretase-mediated cleavage of EphA4 and dendritic spine formation. Journal of Cell Biology, 185, 551–564.
Janes, P. W., Saha, N., Barton, W. A., Kolev, M. V., Wimmer-Kleikamp, S. H., Nievergall, E., …, Nikolov, D. B. (2005). Adam meets Eph: An ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell, 123, 291–304.
Jarriault, S., Brou, C., Logeat, F., Schroeter, E. H., Kopan, R., & Israel, A. (1995). Signalling downstream of activated mammalian Notch. Nature, 377, 355–358.
Kaplan, K. B., Bibbins, K. B., Swedlow, J. R., Arnaud, M., Morgan, D. O., & Varmus H. E. (1994). Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527. EMBO Journal, 13, 4745–4756.
Kim, D. Y., Ingano, L. A., Carey, B. W., Pettingell, W. H., & Kovacs, D. M. (2005). Presenilin/gamma-secretase-mediated cleavage of the voltage-gated sodium channel beta2-subunit regulates cell adhesion and migration. Journal of Biological Chemistry, 280, 23251–23261.
Klein, R., & Kania, A. (2014). Ephrin signalling in the developing nervous system. Current Opinion in Neurobiology, 27, 16–24.
Kutner, R. H., Zhang, X. Y., & Reiser, J. (2009). Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nature Protocols, 4, 495–505.
Langosch, D., Scharnagl, C., Steiner, H., & Lemberg, M. K. (2015). Understanding intramembrane proteolysis: From protein dynamics to reaction kinetics. Trends in Biochemical Sciences, 40, 318–327.
Linder, S., & Aepfelbacher, M. (2003). Podosomes: Adhesion hot-spots of invasive cells. Trends in Cell Biology, 13, 376–385.
Linder S, & Kopp P. (2005). Podosomes at a glance. Journal of Cell Science, 118, 2079–2082.
Litterst, C., Georgakopoulos, A., Shioi, J., Ghersi, E., Wisniewski, T., Wang, R, …, Robakis, N. K. (2007). Ligand binding and calcium influx induce distinct ectodomain/gamma-secretase-processing pathways of EphB2 receptor. Journal of Biological Chemistry, 282, 16155–16163.
Lu, Q., Sun, E. E., Klein, R. S., & Flanagan, J. G. (2001). Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell, 105, 69–79.
Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Focal adhesion kinase: In command and control of cell motility. Nature Reviews Molecular Cell Biology, 6, 56–68.
Napoli, I., Kierdorf, K., & Neumann, H. (2009). Microglial precursors derived from mouse embryonic stem cells. Glia, 57, 1660–1671.
Pascall, J. C., & Brown, K. D. (2004). Intramembrane cleavage of ephrinB3 by the human rhomboid family protease, RHBDL2. Biochemical and Biophysical Research Communications, 317, 244–252.
Pasquale, E. B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell, 133, 38–52.
Petros, T. J, Bryson, J. B., & Mason, C. (2010). Ephrin-B2 elicits differential growth cone collapse and axon retraction in retinal ganglion cells from distinct retinal regions. Developmental Neurobiology, 70, 781–794.
Prager, K., Wang-Eckhardt, L., Fluhrer, R., Killick, R., Barth, E., Hampel, H., …, Walter, J. (2007). A structural switch of presenilin 1 by glycogen synthase kinase 3beta-mediated phosphorylation regulates the interaction with beta-catenin and its nuclear signaling. Journal of Biological Chemistry, 282, 14083–14093.
Prinz, M., & Priller, J. (2014). Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature Reviews Neuroscience, 15, 300–312.
Rudolph, J., Gerstmann, K., Zimmer, G., Steinecke, A., Doding, A., & Bolz, J. (2014). A dual role of EphB1/ephrin-B3 reverse signaling on migrating striatal and cortical neurons originating in the preoptic area: Should I stay or go away? Frontiers in Cellular Neuroscience, 8, 185.
Santiago, A., & Erickson, C. A. (2002). Ephrin-B ligands play a dual role in the control of neural crest cell migration. Development, 129, 3621–3632.
Schlaepfer, D. D., & Mitra, S. K. (2004). Multiple connections link FAK to cell motility and invasion. Current Opinion in Genetics & Development, 14, 92–101.
Segura, I., Essmann, C. L., Weinges, S., & Acker-Palmer, A. (2007). Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nature Neuroscience, 10, 301–310.
Senturk, A., Pfennig, S., Weiss, A., Burk, K., & Acker-Palmer, A. (2011). Ephrin Bs are essential components of the Reelin pathway to regulate neuronal migration. Nature, 472, 356–360.
Smith, A., Robinson, V., Patel, K., & Wilkinson, D. G. (1997). The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Current Biology, 7, 561–570.
Tanaka, M., Kamo, T., Ota, S., & Sugimura, H. (2003). Association of Dishevelled with Eph tyrosine kinase receptor and ephrin mediates cell repulsion. EMBO J, 22, 847–858.
Tanaka, M., Sasaki, K., Kamata, R., & Sakai, R. (2007). The C-terminus of ephrin-B1 regulates metalloproteinase secretion and invasion of cancer cells. Journal of Cell Science, 120, 2179–2189.
Terwel, D., Steffensen, K. R., Verghese, P. B., Kummer, M. P., Gustafsson, J. A., Holtzman, D. M., & Heneka, M. T. (2011). Critical role of astroglial apolipoprotein E and liver X receptor-alpha expression for microglial Abeta phagocytosis. Journal of Neuroscience, 31, 7049–7059.
Timpson, P., Jones, G. E., Frame, M. C., & Brunton, V. G. (2001). Coordination of cell polarization and migration by the Rho family GTPases requires Src tyrosine kinase activity. Current Biology, 11, 1836–1846.
Tomita, T., Tanaka, S., Morohashi, Y., & Iwatsubo, T. (2006). Presenilin-dependent intramembrane cleavage of ephrin-B1. Molecular Neurodegeneration, 1, 2.
Villa, J. C., Chiu, D., Brandes, A. H., Escorcia, F. E., Villa, C. H., Maguire, W. F., …, Sisodia, S. S. (2014). Nontranscriptional role of Hif-1alpha in activation of gamma-secretase and notch signaling in breast cancer. Cell Reports, 8, 1077–1092.
Vincent, C., Siddiqui, T. A., & Schlichter, L. C. (2012). Podosomes in migrating microglia: components and matrix degradation. Journal of Neuroinflammation, 9, 190.
Walter, J. (2016). Triggering receptor expressed on myeloid cells 2: A molecular link between neuroinflammation and neurodegeneration. Journal of Biological Chemistry, 291, 4334–4341.
Wang, H. U., & Anderson, D. J. (1997). Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron, 18, 383–396.
Waschbusch, D., Born, S., Niediek, V., Kirchgessner, N., Tamboli, I. Y., Walter, J., …, Hoffmann, B. (2009). Presenilin 1 affects focal adhesion site formation and cell force generation via c-Src transcriptional and posttranslational regulation. Journal of Biological Chemistry, 284, 10138–10149.
Wei, S., Xu, G., Bridges, L. C., Williams, P., White, J. M., & DeSimone, D. W. (2010). ADAM13 induces cranial neural crest by cleaving class B Ephrins and regulating Wnt signaling. Developmental Cell, 19, 345–352.
Xu, J., Litterst, C., Georgakopoulos, A., Zaganas, I., & Robakis, N. K. (2009). Peptide EphB2/CTF2 generated by the gamma-secretase processing of EphB2 receptor promotes tyrosine phosphorylation and cell surface localization of N-methyl-D-aspartate receptors. Journal of Biological Chemistry, 284, 27220–27228.