[en] Microglial activation plays an integral role in the development and course of neurodegeneration. Although neuropeptides such as bradykinin (BK), somatostatin (SST), and endothelin (ET) are known to be important mediators of inflammation in the periphery, evidence of a similar function in brain is scarce. Using immunocytochemistry, we demonstrate the expression of receptors for BK (B1, B2 subtypes), ET (ETA, ETB subtypes) and SST (SST 2, 3, 4 subtypes) in primary microglia and microglial cell lines. Exposure of BV2 and N9, as well as primary microglial cells to BK or SST increased Aβ uptake in a concentration-dependent manner, whereas endothelin decreased Aβ uptake. This was caused by increased phagocytosis of Aβ since the rate of intracellular Aβ degradation remained unaffected. All neuropeptides increased chemotactic activity of microglia. In addition, BK reduced Aβ-induced expression of proinflammatory genes including iNOS and COX-2. ET decreased the Aβ-induced expression of monocyte chemoattractant protein 1 and interleukin-6. These results suggest that neuropeptides play an important role in chemotaxis and Aβ clearance and modulate the brain's response to neuroinflammatory processes.
Disciplines :
Neurology
Author, co-author :
Fleisher-Berkovich, Sigal; Division of Clinical Neurosciences, Dept. of Neurology, University of Bonn Medical Center, Bonn, Germany
Filipovich-Rimon, Talia; Faculty of Health Sciences, Dept. of Clinical Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Ben-Shmuel, Sarit; Faculty of Health Sciences, Dept. of Clinical Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
Hülsmann, Claudia; Division of Clinical Neurosciences, Dept. of Neurology, University of Bonn Medical Center, Bonn, Germany
Kummer, Markus P; Division of Clinical Neurosciences, Dept. of Neurology, University of Bonn Medical Center, Bonn, Germany
HENEKA, Michael ; Division of Clinical Neurosciences, Dept. of Neurology, University of Bonn Medical Center, Bonn, Germany
External co-authors :
yes
Language :
English
Title :
Distinct modulation of microglial amyloid β phagocytosis and migration by neuropeptides (i).
Fliers E, Swaab DF. Neuropeptide changes in aging and Alzheimer's disease. Prog Brain Res 1986, 70:141-152. full_text, 2883702.
Hayashi M, Yamashita A, Shimizu K. Somatostatin and brain-derived neurotrophic factor mRNA expression in the primate brain: decreased levels of mRNAs during aging. Brain Res 1997, 749(2):283-289. 10.1016/S0006-8993(96)01317-0, 9138728.
Duchene J, Ahluwalia A. The kinin B(1) receptor and inflammation: new therapeutic target for cardiovascular disease. Curr Opin Pharmacol 2009, 9(2):125-131. 10.1016/j.coph.2008.11.011, 19124274.
Kumar U, Grant M. Somatostatin and somatostatin receptors. Results Probl Cell Differ 2010, 50:137-184. full_text, 19859675.
Minami M, Kimura M, Iwamoto N, Arai H. Endothelin-1-like immunoreactivity in cerebral cortex of Alzheimer-type dementia. Prog Neuropsychopharmacol Biol Psychiatry 1995, 19(3):509-513. 10.1016/0278-5846(95)00031-P, 7624501.
Burgos-Ramos E, Hervás-Aguilar A, Aguado-Llera D, Puebla-Jiménez L, Hernández-Pinto AM, Barrios V, et al. Somatostatin and Alzheimer's disease. Mol Cell Endocrinol 2008, 286(1-2):104-111. 10.1016/j.mce.2008.01.014, 18359553.
Yoshizawa T, Iwamoto H, Mizusawa H, Suzuki N, Matsumoto H, Kanazawa I. Cerebrospinal fluid endothelin-1 in Alzheimer's disease and senile dementia of Alzheimer type. Neuropeptides 1992, 22(2):85-88. 10.1016/0143-4179(92)90059-6, 1407412.
Davies P, Katzman R, Terry RD. Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa. Nature 1980, 288(5788):279-280. 10.1038/288279a0, 6107862.
Raidoo DM, Bhoola KD. Kinin receptors on human neurones. J Neuroimmunol 1997, 77(1):39-44. 10.1016/S0165-5728(97)00048-9, 9209266.
Corrêa FM, Innis RB, Uhl GR, Snyder SH. Bradykinin-like immunoreactive neuronal systems localized histochemically in rat brain. Proc Natl Acad Sci USA 1979, 76(3):1489-1493. 10.1073/pnas.76.3.1489, 383279, 375238.
Johansson O, Hökfelt T, Elde RP. Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 1984, 13(2):265-339. 10.1016/0306-4522(84)90233-1, 6514182.
Epelbaum J. Somatostatin in the central nervous system: physiology and pathological modifications. Prog Neurobiol 1986, 27(1):63-100. 10.1016/0301-0082(86)90012-2, 2874591.
Wulfsen I, Meyerhof W, Fehr S, Richter D. Expression patterns of rat somatostatin receptor genes in pre- and postnatal brain and pituitary. J Neurochem 1993, 61(4):1549-1552. 10.1111/j.1471-4159.1993.tb13654.x, 8377006.
Epelbaum J, Guillou J, Gastambide F, Hoyer D, Duron E, Viollet C. Somatostatin, Alzheimer's disease and cognition: an old story coming of age?. Prog Neurobiol 2009, 89(2):153-161. 10.1016/j.pneurobio.2009.07.002, 19595735.
Grouselle D, Winsky-Sommerer R, David JP, Delacourte A, Dournaud P, Epelbaum J. Loss of somatostatin-like immunoreactivity in the frontal cortex of Alzheimer patients carrying the apolipoprotein epsilon 4 allele. Neurosci Lett 1998, 255(1):21-24. 10.1016/S0304-3940(98)00698-3, 9839717.
Slama A, Heidet V, Cervera P, Hirsch E, Javoy-Agid F, Epelbaum J. Preservation of Somatostatin Receptors Coupled to the Inhibition of Adenylate Cyclase in the Cortex and Hippocampus in Senile Dementia of the Alzheimer Type. Dementia 1991, 2(2):88-94.
Epelbaum J, Dournaud P, Fodor M, Viollet C. The neurobiology of somatostatin. Crit Rev Neurobiol 1994, 8(1-2):25-44.
Krantic S, Robitaille Y, Quirion R. Deficits in the somatostatin SS1 receptor sub-type in frontal and temporal cortices in Alzheimer's disease. Brain Res 1992, 573(2):299-304. 10.1016/0006-8993(92)90776-6, 1354549.
Noda M, Kettenmann H, Wada K. Anti-inflammatory effects of kinins via microglia in the central nervous system. Biol Chem 2006, 387(2):167-171. 10.1515/BC.2006.022, 16497148.
Noda M, Kariura Y, Amano T, Manago Y, Nishikawa K, Aoki S, et al. Kinin receptors in cultured rat microglia. Neurochem Int 2004, 45(2-3):437-442. 10.1016/j.neuint.2003.07.007, 15145558.
Khimji A, Rockey DC. Endothelin-Biology and disease. Cell Signal 2010, 22(11):1615-1625. 10.1016/j.cellsig.2010.05.002, 20466059.
Liu B, Du L, Hong JS. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 2000, 293(2):607-617.
Hanisch U, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007, 10(11):1387-1394. 10.1038/nn1997, 17965659.
Carnevale D, De Simone R, Minghetti L. Microglia-neuron interaction in inflammatory and degenerative diseases: role of cholinergic and noradrenergic systems. CNS Neurol Disord Drug Targets 2007, 6(6):388-397. 10.2174/187152707783399193, 18220778.
Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, et al. Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci USA 2010, 107(13):6058-6063. 10.1073/pnas.0909586107, 2851853, 20231476.
Noda M, Kariura Y, Amano T, Manago Y, Nishikawa K, Aoki S, et al. Expression and function of bradykinin receptors in microglia. Life Sci 2003, 72(14):1573-1581. 10.1016/S0024-3205(02)02449-9, 12551746.
Feindt J, Schmidt A, Mentlein R. Receptors and effects of the inhibitory neuropeptide somatostatin in microglial cells. Brain Res Mol Brain Res 1998, 60(2):228-233. 10.1016/S0169-328X(98)00184-3, 9757047.
Kessler IM, Pacheco YG, Lozzi SP, de Araújo AS, Onishi FJ, de Mello PA. Endothelin-1 levels in plasma and cerebrospinal fluid of patients with cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Surg Neurol 2005, 64(Suppl 1 S1):2-5. discussion S1:5.
Zhang WW, Badonic T, Höög A, Jiang MH, Ma KC, Nie XJ, et al. Astrocytes in Alzheimer's disease express immunoreactivity to the vaso-constrictor endothelin- 1. J Neurol Sci 1994, 122(1):90-96. 10.1016/0022-510X(94)90057-4, 8195809.
Jiang MH, Höög A, Ma KC, Nie XJ, Olsson Y, Zhang WW. Endothelin-1-like immunoreactivity is expressed in human reactive astrocytes. Neuroreport 1993, 4(7):935-937. 10.1097/00001756-199307000-00024, 8369484.
Berelowitz M, Dudlak D, Frohman LA. Release of somatostatin-like immunoreactivity from incubated rat hypothalamus and cerebral cortex. Effects of glucose and glucoregulatory hormones. J Clin Invest 1982, 69(6):1293-1301. 10.1172/JCI110569, 370202, 7045160.
Ifuku M, Färber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, et al. Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci 2007, 27(48):13065-13073. 10.1523/JNEUROSCI.3467-07.2007, 18045900.
Mietkiewski E, Lichota E, Legiecka B, Pałgan E, Staniszewski L, Pietrzak-Nowacka M. Effects of kinins, kallikrein and its inhibitor on certain indices of cell-mediated immunity and humoral immunity in rabbits. Acta Physiol Pol 1980, 31(1):71-79.
Ahmed AA, Wahbi AH, Nordlin K. Neuropeptides modulate a murine monocyte/macrophage cell line capacity for phagocytosis and killing of Leishmania major parasites. Immunopharmacol Immunotoxicol 2001, 23(3):397-409. 10.1081/IPH-100107339, 11694030.
Reinikainen KJ, Riekkinen PJ, Jolkkonen J, Kosma VM, Soininen H. Decreased somatostatin-like immunoreactivity in cerebral cortex and cerebrospinal fluid in Alzheimer's disease. Brain Res 1987, 402(1):103-108. 10.1016/0006-8993(87)91052-3, 3828777.
Wood PL, Etienne P, Lal S, Gauthier S, Cajal S, Nair NP. Reduced lumbar CSF somatostatin levels in Alzheimer's disease. Life Sci 1982, 31(19):2073-2079. 10.1016/0024-3205(82)90099-6, 6184590.
Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang S, et al. Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 2005, 11(4):434-439. 10.1038/nm1206, 15778722.
Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology 2009, 73(10):768-774. 10.1212/WNL.0b013e3181b6bb95, 2848584, 19738171.
Ifuku M, Färber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, et al. Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci 2007, 27(48):13065-13073. 10.1523/JNEUROSCI.3467-07.2007, 18045900.
Ahmed AA, Wahbi A, Nordlind K, Kharazmi A, Sundqvist KG, Mutt V, et al. In vitro Leishmania major promastigote-induced macrophage migration is modulated by sensory and autonomic neuropeptides. Scand J Immunol 1998, 48(1):79-85. 10.1046/j.1365-3083.1998.00380.x, 9714414.
Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm 2010, 117(8):949-960. 10.1007/s00702-010-0433-4, 20552234.
Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, et al. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 1998, 273(49):32730-32738. 10.1074/jbc.273.49.32730, 9830016.
Noda M, Kariura Y, Pannasch U, Nishikawa K, Wang L, Seike T, et al. Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. J Neurochem 2007, 101(2):397-410. 10.1111/j.1471-4159.2006.04339.x, 17402969.