[en] In astroglial cells beta-amyloid peptides (betaA) induce a reactive phenotype and increase expression of NO synthase. Here we show that treatment of rat brain astrocytes with betaA decreases their capacity to accumulate cyclic GMP (cGMP) in response to NO as a result of a decreased expression of soluble guanylyl cyclase (sGC) at the protein and mRNA levels. Potentiation of betaA-induced NO formation by interferon-gamma did not result in a larger decrease in cGMP formation and inhibition of NO synthase failed to reverse down-regulation of sGC, indicating that NO is not involved. The betaA effect was prevented by the protein synthesis inhibitor cycloheximide. Intracerebral betaA injection also decreased sGC beta1 subunit mRNA levels in adult rat hippocampus and cerebellum. A loss of sGC in reactive astrocytes surrounding beta-amyloid plaques could be a mechanism to prevent excess signalling via cGMP at sites of high NO production.
Disciplines :
Neurology
Author, co-author :
Baltrons, María Antonia; Instituto de Biotecnología y Biomedicina V. Villar Palasi, Departamento de Bioquímica Biología Molecular, Universidad Autónoma de Barcelona, 08193, Bellaterra, Spain
Pedraza, Carlos E; Instituto de Biotecnología y Biomedicina V. Villar Palasi, Departamento de Bioquímica Biología Molecular, Universidad Autónoma de Barcelona, 08193, Bellaterra, Spain
HENEKA, Michael ; Department of Neurology, University of Bonn, 53105, Bonn, Germany
García, Agustina; Instituto de Biotecnología y Biomedicina V. Villar Palasi, Departamento de Bioquímica Biología Molecular, Universidad Autónoma de Barcelona, 08193, Bellaterra, Spain
External co-authors :
yes
Language :
English
Title :
Beta-amyloid peptides decrease soluble guanylyl cyclase expression in astroglial cells.
We thank Francisca García for assistance in cell culture preparations and Annabel Segura for technical assistance. This work was supported in part by DGICYT (PB97-0201), Fundació La Marató TV3 (1008/97), and DGR (SGR99-00123) grants. Carlos E. Pedraza is the recipient of a predoctoral fellowship from Ministerio de Educación y Cultura (Spain).
Adlar P.A., West A.K., Vickers J.C. (1998) Increased density of metallothionein I/II-immunopositive cortical glial cells in the early stages of Alzheimer's disease. Neurobiol. Dis. 5:349-356.
Akama K.T., Van Eldik L.J. (2000) Beta-Amyloid stimulation of inducible nitric oxide synthase in astrocytes is interleukin-1β- and tumor necrosis factor-α (TNF-α)-dependent, and involves a TNF-α receptor-associated factor-and NFkappaB-inducing kinase-dependent signalling mechanism. J. Biol. Chem. 275:7918-7924.
Araujo D.M., Cotman C.W. (1992) β-Amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer's disease. Brain Res. 569:141-145.
Agulló L., García A. (1992) Characterization of noradrenaline-stimulated cyclic GMP formation in brain astrocytes in culture. Biochem. J. 288:619-624.
Agulló L., Baltrons M.A., García A. (1995) Calcium-dependent nitric oxide formation in glial cells. Brain Res. 686:160-168.
Agulló L., García A. (1997) Ca2+/calmodulin dependent cyclic GMP phosphodiesterase activity in granule neurons and astrocytes from cerebellum. Eur. J. Pharmacol. 323:119-125.
Baltrons M.A., Saadoun S., Agulló L., García A. (1997) Regulation by calcium of the nitric oxide/cyclic GMP system in cerebellar granule cells and astroglia in culture. J. Neurosci. Res. 49:333-341.
Baltrons M.A., García A. (1999) Nitric oxide-independent down-regulation of soluble guanylyl cyclase by bacterial endotoxin in astroglial cells. J. Neurochem. 73:2149-2157.
Baltrons M.A., García A. (2001) The nitric oxide/cyclic GMP system in astroglial cells. Progress in Brain Research , B. Castellano and M. Nieto-Sampedro, Eds., Elsevier Science, SV; 132:335-347.
Bonkale W.L., Winblad B., Ravid R., Cowbum R.F. (1995) Reduced nitric oxide responsive soluble guanylyl cyclase activity in the superior temporal cortex of patients with Alzheimer's disease. Neurosci. Lett. 187:5-8.
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248-254.
Buechler W.A., Nakane M., Murad F. (1991) Expression of soluble guanylate cyclase activity requires both enzyme subunits. Biochem. Biophys. Res. Commun. 174:351-357.
Dringen R., Gutterer J.M., Hirrlinger J. (2000) Gluthatione metabolism in brain. Eur. J. Biochem. 267:4912-4916.
Eddleston M., Mucke L. (1993) Molecular profile of reactive astrocytes-implications for their role in neurologic disease. Neuroscience 54:15-36.
Filippov G., Bloch D.B., Bloch K.D. (1997) Nitric oxide decreases stability of mRNAs encoding soluble guanylate cyclase subunits in rat pulmonary artery smooth muscle cells. J. Clin. Invest. 100:942-948.
Förstermann U., Boissel J.-P., Kleinert H. (1998) Expressional control of the 'constitutive' isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J. 12:773-790.
Garthwaite J., Boulton C.L. (1995) Nitric oxide signalling in the central nervous system. Annu. Rev. Physiol. 57:683-706.
Gibb B.J., Garthwaite J. (2001) Subunits of the nitric oxide receptor, soluble guanylyl cyclase, expressed in rat brain. Eur. J. Neurosci. 13:539-544.
González-Scarano F., Baltuch G. (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22:219-240.
Goodwin J.L., Uemura E., Cunnick J.E. (1995) Microglial release of nitric oxide by the synergistic action of beta-amyloid and INF-gamma. Brain Res. 692:207-214.
Griffiths C., Garthwaite J. (2001) The shaping of nitric oxide signals by a cellular sink. J. Physiol. 536:855-862.
Guo L., Sawkar A., Zasadzki M., Watterson D.M., Van Eldik L.J. (2001) Similar activation of glial cultures from different rat brain regions by neuroinflammatory stimuli and downregulation of the activation by a new class of small molecule ligands. Neurobiol. Aging 22:975-981.
Harteneck C., Koesling D., Söling A., Schultz G., Böhme E. (1990) Expression of soluble guanylyl cyclase. Catalytic activity requires two enzyme subunits. FEBS Lett. 272:221-223.
Hauss-Wegrzyniak B., Dobrzanski P., Stoehr J.D., Wenk G.L. (1998) Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer's disease. Brain Res. 780:294-303.
Heneka M.T., Klockgether T., Feinstein D.L. (2000) Peroxixome proliferator-activated receptor-γ ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J. Neurosci 20:6862-6867.
Hu J., Akama K.T., Krafft G.A., Chromy B.A., Van Eldik L.J. (1998) Amyloid-β peptide activates cultured astrocytes: Morphological alterations, cytokine induction and nitric oxide release. Brain Res. 785:195-206.
Itano Y., Noji S., Koyama E., Taniguchi S., Taga N., Takahashi T., Ono K., Kosaka F. (1991) Bacterial endotoxin-induced expression of metallothionein genes in rat brain, as revealed by in situ hybridization. Neurosci. Lett. 124:13-16.
Klegeris A., McGeer P.L. (1997) β-Amyloid protein enhances macrophage production of oxygen free radicals and glutamate. J. Neurosci. Res. 49:229-235.
Kim Y.-M., Chung H.-T., Kim S.-S., Han J.-A., Yoo Y.-M., Kim K.-M., Lee G.-H., Yun H.-Y., Green A., Li J., Simmons R.L., Billiar T.R. (1999) Nitric oxide protects PC12 cells from serum deprivation-induced apoptosis by cGMP-dependent inhibition of caspase signalling. J. Neurosci. 19:6740-6747.
Laskay G., Zarándi M., Varga J., Jost K., Fónagy A., Torday C., Latzkovits L., Penke B. (1997) A putative tetrapeptide antagonist prevents β-amyloid-induced long-term elevation of [Ca2+]i in rat astrocytes. Biochem. Biophys. Res. Commun. 235:479-481.
Liu H., Force T., Bloch K.D. (1997) Nerve growth factor decreases soluble guanylate cyclase in rat pheochromocytoma PC12 cells. J. Biol. Chem. 272:6038-6043.
Lowry O.M., Rosebrough N.J., Farr A.L., Randall R.J. (1951) Protein measurements with the folin phenol reagent. J. Biol. Chem. 193:265-275.
Meda L., Cassatella M.A., Szendrei G.I., Otvos L. Jr., Baron P., Villalba M., Ferrari D., Rossi F. (1995) Activation of microglial cells by β-amyloide protein and interferon-γ. Nature 374:647-650.
Papapetropoulos A., Go C., Murad F., Catravas J.D. (1996) Mechanisms of tolerance to sodium nitroprusside in cultured rat aortic smooth muscle cells. Br. J. Pharmacol. 117:147-155.
Papapetropoulos A., Abou-Mohamed G., Marczin N., Murad F., Cadwell W., Catravas J.D. (1996) Downregulation of nitro-vasodilator-induced cyclic GMP accumulation in cells exposed to endotoxin or interleukin-1β. Br. J. Pharmacol. 118:1359-1366.
Pappolla M.A., Chyan Y.J., Omar R.A., Hsiao K., Perry G., Smith M.A., Bozner P. (1998) Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer's disease: A chronic oxidative paradigm for testing antioxidant therapies in vivo. Am. J. Pathol. 152:871-877.
Paris D., Town T., Parker T.A., Tan J., Humphrey J., Crawford F., Mullan M. (1999) Inhibition of Alzheimer's β-Amyloid induced vasoactivity and proinflammatory response in microglia by a cGMP-dependent mechanism. Exp. Neurol. 157:211-221.
Paxinos G., Watson C., Pennisi M., Topple A. (1985) Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J. Neurosci. Methods 13:139-143.
Pike C.J., Cummings B.J., Monzavi R., Cotman C.W. (1994) β-Amyloide-induced changes in cultured astrocytes parallel reactive astrocytosis associated with senile plaques in Alzheimer's disease. Neuroscience 63:517-531.
Pike C.J., Cummings B.J., Cotman C.W. (1995) Early association of reactive astrocytes with senile plaques in Alzheimer's disease. Exp. Neurol. 132:172-179.
Rossi F., Bianchini E. (1996) Synergistic induction of nitric oxide by β-amyloid and cytokines in astrocytes. Biochem. Biophys. Res. Commun. 225:474-478.
Salinero O., Moreno-Flores M.T., De Ceballos M.L., Wandosell F. (1997) β-Amyloid peptide induced cytoskeletal reorganization in cultured astrocytes. J. Neurosci. Res. 47:216-223.
Smith M.A., Richey Harris P.L., Sayre L.M., Beckman J.S., Perry G. (1997) Widespread peroxynitrite-mediated damage in Alzheimer's disease. J. Neurosci. 17:2653-2657.
Takata M., Filipopov G., Liu H., Ichinose F., Janssens St., Bloch D.B., Bloch K.D. (2001) Cytokines decrease sGC in pulmonary artery smooth muscle cells via NO-dependent and NO-independent mechanisms. Am. J. Physiol. Lung Cell Mol. Physiol. 280.
Tsuchida S., Hiraoka M., Sudo M., Kigoshi S., Muramatsu I. (1994) Attenuation of sodium nitroprusside responses after prolonged incubation of rat aorta with endotoxin. Am. J. Physiol. 267.
Ujiie K., Hogarth L., Danziger R., Drewett J.G., Yuen P.S.T., Pang I.-H., Star R.A. (1994) Homologous and heterologous desensitization of a guanylyl cyclase-linked nitric oxide receptor in cultured rat medullar interstitial cells. J. Pharmacol. Exp. Ther. 270:761-767.
Zambenedetti P., Girodano R., Zatta P. (1998) Metallothioneins are highly expressed in astrocytes and micropillaries in Alzheimer's disease. J. Chem. Neuroanat. 15:21-26.
Zangger K., Oz G., Haslinger E., Kunert O., Armitage I.M. (2001) Nitric oxide selectively release metals from the N-terminal domain of metallothioneins: Potential role at inflammatory sites. FASEB J., 10. 1096/fj.00-o641fje; .
Zhang J., Snyder S.H. (1995) Nitric oxide in the nervous system. Annu. Rev. Pharmacol. Toxicol. 35:213-233.