Neuroscience (all); Immunology; Neurology; Cellular and Molecular Neuroscience
Abstract :
[en] BACKGROUND: The over-expression of transforming growth factor beta-1(TGF-beta1) has been reported to cause hydrocephalus, glia activation, and vascular amyloidbeta (Abeta) deposition in mouse brains. Since these phenomena partially mimic the cerebral amyloid angiopathy (CAA) concomitant to Alzheimer's disease, the findings in TGF-beta1 over-expressing mice prompted the hypothesis that CAA could be caused or enhanced by the abnormal production of TGF-beta1. This idea was in accordance with the view that chronic inflammation contributes to Alzheimer's disease, and drew attention to the therapeutic potential of anti-inflammatory drugs for the treatment of Abeta-elicited CAA. We thus studied the effect of anti-inflammatory drug administration in TGF-beta1-induced pathology. METHODS: Two-month-old TGF-beta1 mice and littermate controls were orally administered pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, or ibuprofen, a non steroidal anti-inflammatory agent, for two months. Glia activation was assessed by immunohistochemistry and western blot analysis; Abeta precursor protein (APP) by western blot analysis; Abeta deposition by immunohistochemistry, thioflavin-S staining and ELISA; and hydrocephalus by measurements of ventricle size on autoradiographies of brain sections. Results are expressed as means +/- SD. Data comparisons were carried with the Student's T test when two groups were compared, or ANOVA analysis when more than three groups were analyzed. RESULTS: Animals displayed glia activation, hydrocephalus and a robust thioflavin-S-positive vascular deposition. Unexpectedly, these deposits contained no Abeta or serum amyloid P component, a common constituent of amyloid deposits. The thioflavin-S-positive material thus remains to be identified. Pioglitazone decreased glia activation and basal levels of Abeta42- with no change in APP contents - while it increased hydrocephalus, and had no effect on the thioflavin-S deposits. Ibuprofen mimicked the reduction of glia activation caused by pioglitazone and the lack of effect on the thioflavin-S-labeled deposits. CONCLUSIONS: i) TGF-beta1 over-expressing mice may not be an appropriate model of Abeta-elicited CAA; and ii) pioglitazone has paradoxical effects on TGF-beta1-induced pathology suggesting that anti-inflammatory therapy may reduce the damage resulting from active glia, but not from vascular alterations or hydrocephalus. Identification of the thioflavin-S-positive material will facilitate the full appraisal of the clinical implication of the effects of anti-inflammatory drugs, and provide a more thorough understanding of TGF-beta1 actions in brain.
Disciplines :
Neurology
Author, co-author :
Lacombe, Pierre; Laboratoire de Recherches Cérébrovasculaires, CNRS FRE 2363, Paris, France. Elena.Galea@uab.es
Mathews, Paul M; Center for Dementia Research, Nathan Kline Institute, New York Univ. School of Medicine, Orangeburg, NY, United States
Schmidt, Stephen D; Center for Dementia Research, Nathan Kline Institute, New York Univ. School of Medicine, Orangeburg, NY, United States
Breidert, Tilo; Neurologie Exp./Thérapeutique, Hopital de la Pitie-Salpetriere, INSERM U289, Paris, France
HENEKA, Michael ; Department of Neurology, University of Bonn, Bonn, Germany
Landreth, Gary E; Department of Neurosciences, Alzheimer Research Laboratory, Case Western Reserve University, Cleveland, OH, United States
Feinstein, Douglas L; Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
Galea, Elena; Lab. de Rech. Cerebrovasculaires, CNRS FRE 2363, Paris, France ; Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
External co-authors :
yes
Language :
English
Title :
Effect of anti-inflammatory agents on transforming growth factor beta over-expressing mouse brains: a model revised.
Pintavorn P, Ballermann B: TGF-beta and the endothelium during immune injury. Kidney Int 1997, 51:1401-1412.
Wahl SM, Allen JB, Costa GL, Wong HL, Dasch JR: Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta. J Exp Med 1993, 177:225-230.
Wyss-Coray T, Feng L, Masliah E, Ruppe MD, Lee HS, Toggas SM, Rockenstein EM, Mucke L: Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-beta 1. Am J Pathol 1995, 147:53-67.
Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E: Chronic over-production of transforming growth factor-beta1 by astrocytes promotes Alzheimer's disease-like microvascular degeneration in transgenic mice. Am J Pathol 2000, 156:139-50.
Wyss-Coray T, Lin C, von Euw D, Masliah E, Mucke L, Lacombe P: Alzheimer's disease-like cerebrovascular pathology in transforming growth factor-beta 1 transgenic mice and functional metabolic correlates. Ann N Y Acad Sci 2000, 903:317-323.
Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, Mucke L: Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer's disease. Nature 1997, 389:603-606.
Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L: TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 2001, 7:612-618.
Snow AD, Sekiguchi R, Nochlin D, Fraser P, Kimata K, Mizutani A, Arai M, Schreier WA, Morgan DG: An important role of heparan sulfate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar A beta-amyloid in rat brain. Neuron 1994, 12:219-234.
Vinters HV, Wang ZZ, Secor DL: Brain parenchymal and micro-vascular amyloid in Alzheimer's disease. Brain Pathol 1996, 6:179-195.
Kalaria RN: Cerebrovascular degeneration is related to amyloid-beta protein deposition in Alzheimer's disease. Ann N Y Acad Sci 1997, 826:263-271.
Pfeifer LA, White LR, Ross GW, Petrovitch H, Launer LJ: Cerebral amyloid angiopathy and cognitive function: the HAAS autopsy study. Neurology 2002, 58:1629-1634.
McGeer PL, McGeer EG: Local neuroinflammation and the progression of Alzheimer's disease. J Neurovirol 2002, 8:529-538.
in t'Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T, Breteler MM, Stricker BH: Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. N Engl J Med 2001, 345:1515-1521.
Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM: Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J Neurosci 2000, 20:5709-5714.
Lim GP, Yang F, Chu T, Gahtan E, Ubeda O, Beech W, Overmier JB, Hsiao-Ashec K, Frautschy SA, Cole GM: Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol Aging 2001, 22:983-991.
Ricote M, Huang JT, Welch JS, Glass CK: The peroxisome proliferator-activated receptor (PPARgamma) as a regulator of monocyte/macrophage function. J Leukoc Biol 1999, 66:733-739.
Heneka MT, Klockgether T, Feinstein DL: Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J Neurosci 2000, 20:6862-6867.
Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE: Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 2000, 20:558-567.
Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC: Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson's disease. J Neurochem 2002, 82:615-624.
Galea E, Feinstein D: Probing PPARg agonists: could diabetes drugs treat Alzheimer's disease? Alzheimer Research Forum 2002. [http://www.alzforum.org/res/for/journal/galea/default.asp].
Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Sorlano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J: Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 1995, 373:523-527.
Mathews PM, Jiang Y, Schmidt SD, Grbovic OM, Mercken M, Nixon RA: Calpain activity regulates the cell surface distribution of amyloid precursor protein. Inhibition of clapains enhances endosomal generation of beta-cleaved C-terminal APP fragments. J Biol Chem 2002, 277:36415-24.
Rozmahel R, Huang J, Chen F, Liang Y, Nguyen V, Ikeda M, Levesque G, Yu G, Nishimura M, Mathews P, Schmidt SD, Mercken M, Bergeron C, Westaway D, St George-Hyslop P: Normal brain development in PS1 hypomorphic mice with markedly reduced gamma-secretase cleavage of betaAPP. Neurobiol Aging 2002, 23:187-94.
Rozmahel R, Mount HT, Chen F, Nguyen V, Huang J, Erdebil S, Liauw J, Yu G, Hasegawa H, Gu Y, Song YQ, Schmidt SD, Nixon RA, Mathews PM, Bergeron C, Fraser P, Westaway D, St George-Hyslop P: Alleles at the Nicastrin locus modify presenilin 1-deficiency phenotype. Proc Natl Acad Sci U S A 2002, 99:14452-7.
Xu H, Gouras GK, Greenfield JP, Vincent B, Naslund J, Mazzarelli L, Fried G, Jovanovic JN, Seeger M, Relkin NR, Liao F, Checler F, Buxbaum JD, Chait BT, Thinakaran G, Sisodia SS, Wang R, Greengard P, Gandy S: Estrogen reduces neuronal generation of Alzheimer beta-amyloid peptides. Nat Med 1998, 4:447-51.
Armogida M, Petit A, Vincent B, Scarzello S, da Costa CA, Checler F: Endogenous beta-amyloid production in presenilin-deficient embryonic mouse fibroblasts. Nat Cell Biol 2001, 3:1030-1033.
Kim, KS: Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neuroscience Research Communications 1988, 2:121-130.
Pepys MB: Pathogenesis, diagnosis and treatment of systemic amyloidosis. Phil Trans R Soc Lond 2001, 356: 203-211.
Wyss-Coray T, Borrow P, Brooker MJ, Mucke L: Astroglial over-production of TGFbeta 1 enhances inflammatory central nervous system disease in transgenic mice. J Neuroimmunol 1997, 77:45-50.
Munch G, Gasic-Milenkovic J, Dukic-Stefanovic S, Kuhla B, Heinrich K. Riederer P, Huttunen HJ, Founds H, Sajithlal G: Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells. Exp Brain Res 2003, 150:1-8.
Sabri F, Titanji K, De Milito A, Chiodi F: Astrocyte activation and apoptosis: their roles in the neuropathology of HIV infection. Brain Pathol 2003, 13:84-94.
Nitta J, Tada T: Ultramicroscopic structures of the leptomeninx of mice with communicating hydrocephalus induced by human recombinant transforming growth factor-beta 1. Neurol Med Chir (Tokyo) 1998, 38:819-824.
Moinuddin SM, Tada T: Study of cerebrospinal fluid flow dynamics in TGF-beta 1 induced chronic hydrocephalic mice. Neurol Res 2000, 22:215-222.
Johanson CE, Szmydynger-Chodobska J, Chodobski A, Baird A, McMillan P, Stopa EG: Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Physiol 1999, 277:R263-R271.
Pawlik M, Fuchs E, Walker LC, Levy E: Primate-like amyloid-beta sequence but no cerebral amyloidosis in aged tree shrews. Neurobiol Aging 1999, 20:47-51.
Lesne S, Docagne F, Gabriel C, Liot G, Lahiri DK, Buee L, Plawinski L, Delacourte A, MacKenzie ET, Buisson A, Vivien D: TGF-beta 1 potentiates amyloid-beta generation in astrocytes and in transgenic mice. J Biol Chem 2003, 278:18408-18.
Burton T, Liang B, Dibrov A, Amara F: Transcriptional activation and increase in expression of Alzheimer's beta-amyloid precursor protein gene is mediated by TGF-beta in normal human astrocytes. Biochem Biophys Res Commun 2002, 295:702-712.
Sipe JD, Cohen AS: Review: history of the amyloid fibril. J Struct Biol 2000, 130:88-98.
Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO: Capillary and arterial cerebral amyloid angiopathy in Alzheimer's disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 2003, 29:106-117.
Weller RO, Nicoll JAR: Cerebral amyloid angiopathy: pathogenesis and effects on the ageing and Alzheimer brain. Neurol Res 2003, 25:611-616.
Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E: Chronic over-production of transforming growth factor beta-1 by astrocytes promotes Alzheimer's disease-like microvascular degeneration in transgenic mice. Am J Pathol 2000, 156:139-150.
Kumar-Singh S, Cras P, Wang R, Kros JM, van Swieten J, Lubke U, Ceuterick C, Serneels S, Vennekens K, Timmermans JP, Van Marck E, Martin JJ, van Duijn CM, Van Broeckhoven C: Dense-core senile plaques in the Flemish variant of Alzheimer's disease are vasocentric. Am J Pathol 2002, 16:507-20.
Botto M, Hawkins PN, Bickerstaff MC, Herbert J, Bygrave AE, McBride A, Hutchinson WL, Tennent GA, Walport MJ, Pepys MB: Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nature Med 1997, 3:855-9.
Veerhuis R, Van Breemen MJ, Hoozemans JM, Morbin M, Ouladhadj J, Tagliavini F, Eikelenboom P: Amyloid beta plaque-associated proteins C1q and SAP enhance the Abeta1-42 peptide-induced cytokine secretion by adult human microglia in vitro. Acta Neuropathol 2003, 105:135-44.
Shi J, Perry G, Aliev G, Smith MA, Ashe KH, Friedland RP: Serum amyloid P is not present in amyloid beta deposits of a transgenic animal model. Neuroreport 1999, 10:3229-32.
Abbot NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Cell Molec Neuro 1992, 10: 2010-2031.
McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 1999, 46:860-866.
Van Dorpe J, Smeijers L, Dewachter I, Nuyens D, Spittaels K, Van Den Haute C, Mercken M, Moechars D, Laenen I, Kuiperi C, Bruynseels K, Tesseur I, Loos R, Vanderstichele H, Checler F, Sciot R, Van Leuven F: Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol 2000, 157:1283-1298.